Аналитическая геометрия и линейная алгебра. Умнов А.Е. - 40 стр.

UptoLike

Составители: 

Рубрика: 


Ë} ÒÒ}ÈÁË ¯©m©° Ë®äÈËäÈÒ}Òlnj
ÙkÓÈãÒÒË°}È«˺äË¯Ò«ÒãÒÓË®ÓÈ«ÈãË¯Èµ
äÓºmkp
v}È㫯ӺË ¹¯ºÒÏmËËÓÒË ººÏÓÈÈË°« }È}
(,)
ab
→→
 º º¹¯ËËãËÓÒ
( , ) | || |cos ;
ab a b
→→
=≤
ϕϕπ
0
 Ë
ϕ
ºã äËÎ mË}º¯ÈäÒ°ºäÓºÎÒËã«äÒ p°ãÒ
bo
→→
ºÒäËËäË°º¯ÈmËÓ°mº
(,)ab b a
b
→→
=
ý

vmº®°mÈ°}È㫯Ӻº¹¯ºÒÏmËËÓÒ«
°
(,)ab
→→
=
0
¹¯Ò
ao
→→
Ò
bo
→→
ºÈÒºã}º ºÈÈ
D
Ò
E
kojqutv
vézvmvtjst
°

(,) (,)ab ba
→→ →→
=
rvuuyzjzqktvxz vãËË ÒÏ º¹¯ËËãËÓÒ« °}È㫯Ӻº
¹¯ºÒÏmËËÓÒ«Ò°mº®°m}º°ÒÓ°È
°

(,)(,)(,)
aab ab ab
12 1 2
→→
+= +
lqxzéqiyzqktvxz

iº}ÈÏÈËã°mº
p°ãÒ
bo
→→
=
º
°
ºËmÒÓº°
bo
→→
ºÈ
(,) () (,)(,).
aabb aababaabab
bbb
12 12 1 2 1 2
→→
→→
→→
+= += + = +
→→
ý ý ý
vmº®°mºº}ÈÏÈÓº


°

(,) (,)
λλ
ab ab
→→ →→
=

°
(,) || ; || (,)aa a a a aa
→→ →→
=≥ =
2
0

ÏÈäËÒäÈ}ÎËº°ãºmÒ«
(,)aa
→→
=
0
Ò
ao
→→
=
¯ÈmÓº°ÒãÓ©
°¯Ò
ao
→→
Ò
bo
→→
cos
(,)
||||
ϕ
=
→→
→→
ab
ab

 Ë }  Ò Ò    } È Á Ë  ¯ ©   m © °  Ë ®   ä È ˆ Ë ä È ˆ Ò } Ò   l n ‘ j 
ÙkÓÈã҈ÒË°}È«˺äˈ¯Ò«ÒãÒÓË®ÓÈ«ÈãË­¯ÈµäÓºmkp



                                                                                                                   → →
            v}È㫯ӺË                 ¹¯ºÒÏmËËÓÒË                  º­ºÏÓÈÈˈ°«                   }È}        ( a , b )        º     º¹¯ËËãËÓÒ 
 → →        →       →
( a , b ) =|a || b |cosϕ ; 0 ≤ ϕ ≤ π  Ë ϕ   ‚ºã äË΂ mË}ˆº¯ÈäÒ°ºäÓºÎ҈Ëã«äÒ p°ãÒ
→     →                                                         → →              →                →
b ≠ o ˆºÒäËˈäË°ˆº¯ÈmËÓ°ˆmº ( a , b ) = b ý→ a 
                                                                                              b
            
            
            
vmº®°ˆmÈ°}È㫯Ӻº¹¯ºÒÏmËËÓÒ«
            
            
                        → →                        →       →        →         →                                                         →     →
                ° ( a , b ) = 0  ¹¯Ò a ≠ o  Ò b ≠ o  ˆºÈ Ò ˆºã }º ˆºÈ }ºÈ D  Ò E  kojqutv
                        vézvmvtjst€
                        
                        
                        → →              → →
                ° ( a , b ) = ( b , a )  rvuuyzjzqktvxz  vãË‚ˈ ÒÏ º¹¯ËËãËÓÒ« °}È㫯Ӻº
                        ¹¯ºÒÏmËËÓÒ«Ò°mº®°ˆm}º°Òӂ°È 
                        
                        
                        →        → →            → →             → →
                ° ( a1 + a 2 , b ) = ( a1 , b ) + (a 2 , b )  lqxzéqiyzqktvxz 
            
            
                         iº}ÈÏȈËã°ˆmº
                           
                                            →       →                                                 →       →
                                  p°ãÒ b = o ˆº°ºËmÒÓº‚°ˆ  b ≠ o ˆºÈ
                                       →        → →         →                  →       →          →           →     →                →       → →   → →
                                      (a1 + a 2 , b ) = b ý→ (a1 + a 2 ) = b ý→ a1 + b ý→ a 2 = (a1 , b ) + (a 2 , b ) .
                                                                         b                                b                      b
                                      
                                  
                             vmº®°ˆmºº}ÈÏÈÓº
            
            
                         → →               → →
            ° ( λ a , b ) = λ ( a , b ) 
            
            
                        → →       →                 →           →             → →
            ° ( a , a ) =|a |2 ≥ 0 ∀ a ;                   | a | = ( a , a ) 
                                                                                       → →                    →      →
             ÏÈäˈÒäˆÈ}Îˈº‚°ãºmÒ« ( a , a ) = 0 Ò a = o ¯ÈmÓº°Òã Ó© 
            
            
                                                                              → →
                              →        →        →       →                    (a, b)
            °¯Ò a ≠ o Ò b ≠ o  cos ϕ =                             →     →     
                                                                             |a | |b |