Аналитическая геометрия и линейная алгебра. Умнов А.Е. - 42 стр.

UptoLike

Составители: 

Рубрика: 


Ë} ÒÒ}ÈÁË ¯©m©° Ë®äÈËäÈÒ}Òlnj
ÙkÓÈãÒÒË°}È«˺äË¯Ò«ÒãÒÓË®ÓÈ«ÈãË¯Èµ
äÓºmkp
ÈÈ

Ëjpzqéjxxzv¹tqnunlylkyu¹zv·rjuqkvézvtvéuqévkjttvpxqxzn
unrvvélqtjznxsqqoknxztéjlqyxknrzvéëzq}zv·nr
ËÓÒË
°ÏÈÈÓÈ º¯ºÓº¯äÒ¯ºmÈÓÓÈ« °Ò°ËäÈ }ºº¯ÒÓÈ
{, , , }
Oe e e
123
→→
Ò
¯ÈÒ°mË}º¯© m² ºË}
OM
2
1
2
3
=
ξ
ξ
ξ
Ò
OM
1
1
2
3
=
η
η
η
mÓË®ºÈ
Ò°¹ºãÏ«¯ËËÓÒËÏÈÈÒÒÏ¯ÈmËÓ°mÈ
MM e e e
12 1 11 2 22 3 313
=− + +
→→
()( )( )
ξ
η
ξ
η
ξ
η
Ò°mº®°m°}È㫯Ӻº¹¯ºÒÏmËËÓÒ«¹ºãÈËä
||()()()
MM
12 1 1
2
22
2
33
2
=−++
ξ
η
ξ
η
η

{Ë}º¯ÓºË¹¯ºÒÏmËËÓÒËmË}º¯ºmÒ˺°mº®°mÈ
|¹¯ËËãËÓÒË

¹º¯«ºËÓÓÈ«¯º®}ÈÓË}ºä¹ãÈÓȯө²mË}º¯ºm^
a

b

c
`ÓÈÏ©mÈË°«
wéjkvpË°ãÒ¹º°ãË°ºmäËËÓÒ«Ò²ÓÈÈã}¯ÈȮҮ¹ºmº¯ººmË}º¯È
a
}mË}º¯
b
mÒËÓÒÏ}ºÓÈmË}º¯È
c
°ºm˯ÈÒä°«¹¯ºÒmÈ
°ºmº®°¯Ëã}Ò
|¹¯ËËãËÓÒË

ÆnrzvétuwévqoknlntqnuÓË}ºããÒÓËȯө²mË}º¯ºm
a
Ò
b
ÓÈÏ©mÈË°«
mË}º¯
c
È}º®º
°
ϕ
sin||||||
=
bac
Ë
ϕ
ºã
äËÎmË}º¯ÈäÒ
ab
→→
<<
,;0
ϕπ
°{Ë}º¯
c
º¯ººÓÈãËÓmË}º¯
a
ÒmË}º¯
b

°¯º®}ÈmË}º¯ºm^
a

b

c
`¹¯ÈmÈ«
{ °ãÈË È °ºäÓºÎÒËãÒ }ºããÒÓËȯө m ºäÒ°ãË È ²º« ©
ºÒÓ ÒÏ °ºäÓºÎÒËãË® Ë° ÓãËmº® mË}º¯ mË}º¯ÓºË ¹¯ºÒÏmËËÓÒË
°ÒÈË°«¯ÈmÓ©äÓãËmºämË}º¯
{Ë}º¯ÓºË¹¯ºÒÏmËËÓÒËººÏÓÈÈË°«}È}
[,]
ab
→→
jÏº¹¯ËËãËÓÒ«°ãËËº
°
[,]
ab
→→
¯ÈmËÓ¹ãºÈÒ¹È¯ÈããË㺯ÈääÈ¹º°¯ºËÓÓººÓÈmË}º¯È²
a
Ò
b

 Ë }  Ò Ò    } È Á Ë  ¯ ©   m © °  Ë ®   ä È ˆ Ë ä È ˆ Ò } Ò   l n ‘ j 
ÙkÓÈã҈ÒË°}È«˺äˈ¯Ò«ÒãÒÓË®ÓÈ«ÈãË­¯ÈµäÓºmkp



  ~ÈÈÈ            Ëjpzqéjxxzv¹tqnun lylkyu¹zv·rjuqkvézvtvéuqévkjttvpxqxzn
              unrvvélqtjznxsqqoknxzt€éjlqyxknrzvé€ëzq}zv·nr
          
                                                                                                                              → → →
 cËËÓÒË               ‚°ˆ  ÏÈÈÓÈ º¯ˆºÓº¯äÒ¯ºmÈÓÓÈ« °Ò°ˆËäÈ }ºº¯ÒÓȈ {O, e1 , e2 , e3 }  Ò
                                                             ξ1             η1
                                                                      →       →
                         ¯È҂°mË}ˆº¯© m‚² ˆºË} OM 2 = ξ2  Ò OM 1 = η2  m ÓË® ‘ºÈ
                                                             ξ3             η3
                         Ò°¹ºã ς«¯Ë ËÓÒËÏÈÈÒÒϯÈmËÓ°ˆmÈ
                                                     →                      →                      →                   →
                                                 M 1 M 2 = (ξ1 − η1 ) e1 + (ξ2 − η2 ) e2 + (ξ3 − η31 ) e3 
                                                                                     
                         Ò°mº®°ˆm°}È㫯Ӻº¹¯ºÒÏmËËÓÒ«¹ºã‚ÈËä
                         
                                                       →
                                                  | M 1 M 2 | = (ξ1 − η1 ) 2 + (ξ2 − η2 ) 2 + (ξ3 − η3 ) 2 
            
            
            
            
{Ë}ˆº¯ÓºË¹¯ºÒÏmËËÓÒËmË}ˆº¯ºmÒ˺°mº®°ˆmÈ
            
            
            
                                                                                                             →     →      →
 |¹¯ËËãËÓÒË            ¹º¯«ºËÓÓÈ«ˆ¯º®}ÈÓË}ºä¹ãÈÓȯө²mË}ˆº¯ºm^ a  b  c `ÓÈÏ©mÈˈ°«
                  wéjkvpË°ãÒ¹º°ãË°ºmä˝ËÓÒ«Ò²ÓÈÈã}¯ÈˆÈ® Ò®¹ºmº¯ºˆºˆmË}ˆº¯È
                         →                      →                                              →
                             a }mË}ˆº¯‚ b mÒËÓÒÏ}ºÓÈmË}ˆº¯È c °ºm˯ È Òä°«¹¯ºˆÒmÈ
                         °ºmº®°ˆ¯Ëã}Ò
            
            
                                                                                                                  →       →
 |¹¯ËËãËÓÒË            Ænrzvét€uwévqoknlntqnuÓË}ºããÒÓËȯө²mË}ˆº¯ºm a Ò b ÓÈÏ©mÈˈ°«
                              →
                         mË}ˆº¯ c ˆÈ}º®ˆº
                                           →     →    →                                                             → →
                                    ° | c |=| a || b | sin ϕ Ë ϕ ‚ºãäË΂mË}ˆº¯ÈäÒ a , b ;                        0 < ϕ < π 
                                                      →                                        →                    →
                                    °{Ë}ˆº¯ c º¯ˆººÓÈãËÓmË}ˆº¯‚ a ÒmË}ˆº¯‚ b 
                                                                        →     →    →
                                    °‘¯º®}ÈmË}ˆº¯ºm^ a  b  c `¹¯ÈmÈ«
                         
                         { °ã‚ÈË }ºÈ °ºäÓºÎ҈ËãÒ }ºããÒÓËȯө m ˆºä Ò°ãË }ºÈ ²ºˆ« ­©
                         ºÒÓ ÒÏ °ºäÓºÎ҈ËãË® Ë°ˆ  ӂãËmº® mË}ˆº¯  mË}ˆº¯ÓºË ¹¯ºÒÏmËËÓÒË
                         °҈Èˈ°«¯ÈmÓ©äӂãËmºä‚mË}ˆº¯‚
            
                                                                                         → →
            {Ë}ˆº¯ÓºË¹¯ºÒÏmËËÓÒ˺­ºÏÓÈÈˈ°«}È} [ a , b ] jϺ¹¯ËËãËÓÒ«°ãË‚ˈˆº
            
                     → →                                                                                                          →       →
            ° [ a , b ] ¯ÈmËӹ㺝ÈҹȯÈããË㺯Èääȹº°ˆ¯ºËÓÓººÓÈmË}ˆº¯È² a Ò b