Аналитическая геометрия и линейная алгебра. Умнов А.Е. - 41 стр.

UptoLike

Составители: 

Рубрика: 

cÈÏ Ëã
45
¯ºÒÏmËËÓÒ«mË}º¯ºm

{©¯ÈÎËÓÒË°}È㫯Ӻº¹¯ºÒÏmËËÓÒ«m}ºº¯ÒÓÈȲ
°ÏÈÈÓÈ°Ò°ËäÈ}ºº¯ÒÓÈ
{, , , }
Og g g
123
→→
ÒmÈmË}º¯È
a
Ò
b
ã«}ºº
¯©²
agg g
→→
=++
ξξ ξ
11 2 2 33
Ò
bgg g
→→
=++
ηη η
11 2 2 33

º°mº®°mÈä°}È㫯Ӻº¹¯ºÒÏmËËÓÒ«
(, ) ( , )
(,) (, ) (, )
(,) (,) (,)
(,) (
ab g g g g g g
gg gg gg
gg gg gg
gg g
→→
→→
→→
→→
=++ ++ =
=+ ++
++ ++
++
ξξ ξηη η
ξη ξη ξη
ξη ξη ξη
ξη ξη
11 2 2 33 11 2 2 33
11 1 1 12 1 2 13 1 3
21 2 1 22 2 2 23 2 3
3131 3232 3333
11 2 2 33
1
3
1
3
1
3
→→ →→
→→
=
→→
==
+=
=++=
∑∑
,) (,)
((,) (,) (,)) (,).
ggg
gg gg gg gg
jj j j jj
j
ji j i
ij
ξη
ξη ξη ξη ξη
{ °ãÈËº¯ºÓº¯äÒ¯ºmÈÓÓººÈÏÒ°È
{, , }eee
123
→→
 ªÈÁº¯äãÈ¹¯ºÈË°«¹º°}ºã}ã«
¹º¹È¯Ó©²°}È㫯ө²¹¯ºÒÏmËËÓÒ®ÈÏÒ°Ó©²mË}º¯ºm°¹¯ÈmËãÒmº¯ÈmËÓ°mº
=
==
ji
ji
ee
jiji
,0
,1
),(
δ

Ë
δ
LM
È}ÓÈÏ©mÈËä©®°Òämºãz ¯ºÓË}˯È|}Èã«°}È㫯Ӻº¹¯ºÒÏmËËÓÒ«mË}
º¯ºmmº¯ºÓº¯äÒ¯ºmÈÓÓºäÈÏÒ°Ë¹ºãÈËäÁº¯äã
332211
),(
η
ξ
η
ξ
η
ξ
++=
ba

ÒÏ}ºº¯º®°ãË¹ºãËÏÓ©Ë°ººÓºËÓÒ«
2
3
2
2
2
1
ξ
ξ
ξ
++=
a

Èã«
ao
→→
Ò
bo
→→

2
3
2
2
2
1
2
3
2
2
2
1
332211
cos
ηηη
ξ
ξ
ξ
η
ξ
η
ξ
η
ξ
ϕ
++++
++
=
.
|äËÒäº¹º°ãËÓËË¯ÈmËÓ°mºm°ºËÈÓÒÒ°°ãºmÒËä
cos
ϕ
1
¹¯ÒmºÒ}
tnéjkntxzkyÇv¡qÈyt¹rvkxrvmv
.3,2,1,,;
2
3
2
2
2
1
2
3
2
2
2
1332211
=++++++ i
ii
η
ξ
ηηη
ξ
ξ
ξ
η
ξ
η
ξ
η
ξ
c È Ï  Ë ã                                                      45
¯ºÒÏmËËÓÒ«mË}ˆº¯ºm



{©¯ÈÎËÓÒË°}È㫯Ӻº¹¯ºÒÏmËËÓÒ«m}ºº¯ÒÓȈȲ
                  
                  
                  
                                                                                                           →     →       →                                         →          →
                  ‚°ˆ ÏÈÈÓÈ°Ò°ˆËäÈ}ºº¯ÒÓȈ {O, g1 , g 2 , g 3 } ÒmÈmË}ˆº¯È a Ò b ã«}ºˆº
           →            →             →              →         →             →              →              →
¯©² a = ξ1 g1 + ξ2 g 2 + ξ3 g 3 Ò b = η1 g1 + η2 g 2 + η3 g 3 
        
        º°mº®°ˆmÈä°}È㫯Ӻº¹¯ºÒÏmËËÓÒ«
        
                      →→                         →             →              →            →               →                 →
                   (a , b )         = (ξ1 g1 + ξ2 g 2 + ξ3 g 3 , η1 g1 + η2 g 2 + η3 g 3 ) =
                                                   →      →                       →      →                       →       →
                                    = ξ1η1 ( g1 , g1 ) + ξ1η2 ( g1 , g 2 ) + ξ1η3 ( g1 , g 3 ) +
                                                     →     →                       →       →                         →       →
                                    + ξ2 η1 ( g 2 , g1 ) + ξ2 η2 ( g 2 , g 2 ) + ξ2 η3 ( g 2 , g 3 ) +                                                                                     
                                                     →     →                      →       →                          →   →
                                    + ξ3η1 ( g 3 , g1 ) + ξ3η2 ( g 3 , g 2 ) + ξ3η3 ( g 3 , g 3 ) =
                                          3                  →      →                       →       →                        →     →                3     3               →      →
                                    = ∑ ( ξ j η1 ( g j , g1 ) + ξ j η2 ( g j , g 2 ) + ξ j η3 ( g j , g 3 ) ) = ∑ ∑ ξ j ηi ( g j , g i ) .
                                          j =1                                                                                                    j =1 i =1
                                                                                                       
                                                                                           → → →
{°ã‚È˺¯ˆºÓº¯äÒ¯ºmÈÓÓºº­ÈÏÒ°È {e1 , e2 , e3 } ªˆÈÁº¯ä‚ãÈ‚¹¯ºÈˈ°«¹º°}ºã }‚ã«
¹º¹È¯Ó©²°}È㫯ө²¹¯ºÒÏmËËÓÒ®­ÈÏÒ°Ó©²mË}ˆº¯ºm°¹¯ÈmËãÒmº¯ÈmËÓ°ˆmº

                                                                                → →                  1, i = j
                                                                               (ei , e j ) = δ i j =          
                                                                                                     0, i ≠ j
                                               
Ë δLM ˆÈ} ÓÈÏ©mÈËä©® °Òämºã z¯ºÓË}˯È |ˆ}‚È ã« °}È㫯Ӻº ¹¯ºÒÏmËËÓÒ« mË}
ˆº¯ºmmº¯ˆºÓº¯äÒ¯ºmÈÓÓºä­ÈÏҰ˹ºã‚ÈËäÁº¯ä‚ã‚

                                                                              →→
                                                                           (a, b )= ξ 1η 1 + ξ 2η 2 + ξ 3η 3 
                                        
ÒÏ}ºˆº¯º®°ãË‚ ˆ¹ºãËÏÓ©Ë°ººˆÓº ËÓÒ«

                                      →
                                      a = ξ 12 + ξ 22 + ξ 32 

                                                  →        →          →        →                                     ξ 1η 1 + ξ 2η 2 + ξ 3η 3
                                    Èã« a ≠ o Ò b ≠ o  cos ϕ =                                                                                               .
                                                                                                               ξ12 + ξ 22 + ξ 32 η12 + η 22 + η32


       |ˆäˈÒ䈺¹º°ãËÓË˯ÈmËÓ°ˆmºm°ºˈÈÓÒÒ°‚°ãºmÒËä cos ϕ ≤ 1¹¯Òmº҈}
tnéjkntxzkyÇv¡qÈyt¹rvkxrvmv
       
                                          ξ1η1 + ξ 2η 2 + ξ 3η3 ≤ ξ12 + ξ 22 + ξ 32 η12 + η 22 + η32 ; ∀ ξ i ,ηi , i = 1,2,3.