Аналитическая геометрия и линейная алгебра. Умнов А.Е. - 46 стр.

UptoLike

Составители: 

Рубрика: 


Ë} ÒÒ}ÈÁË ¯©m©° Ë®äÈËäÈÒ}Òlnj
ÙkÓÈãÒÒË°}È«˺äË¯Ò«ÒãÒÓË®ÓÈ«ÈãË¯Èµ
äÓºmkp
ºÈã«mË}º¯Óºº¹¯ºÒÏmËËÓÒ«mË}º¯ºmmº¯ºÓº¯äÒ¯ºmÈÓÓºäÈÏÒ°Ë¹º
ãÈËä
.detdetdetdet
)()()(],[
321
321
321
3
21
21
2
31
31
1
32
32
312212133112332
ηηη
ξ
ξ
ξ
ηη
ξ
ξ
ηη
ξ
ξ
ηη
ξ
ξ
η
ξ
η
ξ
η
ξ
η
ξ
η
ξ
η
ξ
=+=
=+=
eee
eee
eeeba
jÏm©Ë¹¯ÒmËËÓÓ©²Áº¯äãm©Ë}È¹ºãËÏÓ©Ë°ãË°mÒ«
vãË°mÒË

iã« ºº º© mË}º¯©
a
Ò
b
©ãÒ }ºããÒÓËȯө Ó˺²ºÒäº Ò
º°ÈºÓºº©mãº®Ë}ȯºmº®°Ò°ËäË}ºº¯ÒÓÈ
det det det
ξ
ξ
ηη
ξ
ξ
ηη
ξ
ξ
ηη
23
23
13
13
12
12
0
===
ÒãÒÎË
η
ξ
η
ξ
η
1
1
2
2
3
3
==

vãË°mÒË

{º¯ºÓº¯äÒ¯ºmÈÓÓº®°Ò°ËäË}ºº¯ÒÓÈ¹ãºÈ¹È¯ÈããË㺯ÈääÈ
¹º°¯ºËÓÓººÓÈmË}º¯È²
a
Ò
b
m©Ò°ã«Ë°«¹ºÁº¯äãË
S =++
det det det
2
23
23
2
13
13
2
12
12
ξ
ξ
ηη
ξ
ξ
ηη
ξ
ξ
ηη
¹¯ÒËäã«¹ãº°}ºº°ãÈ«
S =
det
ξ
ξ
ηη
12
12
väËÈÓÓºË¹¯ºÒÏmËËÓÒË
|¹¯ËËãËÓÒË

fun¡jttuÒãÒknrzvétvxrjs¹étu¹¯ºÒÏmËËÓÒËämË}º¯ºm
a
b
Ò
c
ººÏÓÈÈËä©ä}È}
( a
 b
 c
)
ÓÈÏ©mÈË°«Ò°ãº
( [ a
, b
], c
)

 Ë }  Ò Ò    } È Á Ë  ¯ ©   m © °  Ë ®   ä È ˆ Ë ä È ˆ Ò } Ò   l n ‘ j 
ÙkÓÈã҈ÒË°}È«˺äˈ¯Ò«ÒãÒÓË®ÓÈ«ÈãË­¯ÈµäÓºmkp



          ‘ºÈã«mË}ˆº¯Óºº¹¯ºÒÏmËËÓÒ«mË}ˆº¯ºmmº¯ˆºÓº¯äÒ¯ºmÈÓÓºä­ÈÏҰ˹º
ã‚ÈËä
          
                →→                          →                       →                     →
             [a, b ]= (ξ 2η3 − ξ 3η 2 ) e1 − (ξ1η3 − ξ 3η1 ) e2 + (ξ1η 2 − ξ 2η1 ) e3 =
                                                                                                 →         →   →
                                                                                                 e1     e2     e3 
                        ξ2 ξ3 →         ξ ξ3 →         ξ ξ2 →
                = det          e1 − det 1     e2 + det 1      e = det ξ1 ξ 2                                   ξ3 .
                        η 2 η3          η1 η3          η1 η 2 3
                                                                      η1 η 2                                   η3
            
            
            
            jÏm© ˹¯ÒmËËÓÓ©²Áº¯ä‚ãm©ˆË}È ˆ¹ºãËÏÓ©Ë°ãË°ˆmÒ«
            
            
            
                                                                       →       →
    vãË°ˆmÒË           iã« ˆºº ˆº­© mË}ˆº¯© a  Ò b  ­©ãÒ }ºããÒÓËȯө Ó˺­²ºÒäº Ò
                  º°ˆÈˆºÓºˆº­©mã ­º®Ë}ȯˆºmº®°Ò°ˆËäË}ºº¯ÒÓȈ
                         
                                       ξ2       ξ3       ξ1 ξ3       ξ1 ξ2                ξ1 ξ2 ξ3
                                det                = det       = det       = 0 ÒãÒÎË   =  = 
                                       η2       η3       η1 η3       η1 η2                η1 η2 η3
            
            
            
    vãË°ˆmÒË           {º¯ˆºÓº¯äÒ¯ºmÈÓÓº®°Ò°ˆËäË}ºº¯ÒÓȈ¹ãºÈ ¹È¯ÈããË㺯ÈääÈ
                                                                 →       →
                         ¹º°ˆ¯ºËÓÓººÓÈmË}ˆº¯È² a Ò b m©Ò°ã«Ëˆ°«¹ºÁº¯ä‚ãË
                         
                                                               ξ2 ξ3         ξ1 ξ3         ξ1 ξ2
                                                S=     det 2         + det 2       + det 2                                 
                                                               η2 η3         η1 η3         η1 η2
                                                                                    
                                                                                        ξ1 ξ2
                         ¹¯ÒËä㫹㺰}ºº°ã‚È« S = det                                          
                                                                                        η1 η2




väËÈÓӺ˹¯ºÒÏmËËÓÒË



                                                                                                                                   →    →
    |¹¯ËËãËÓÒË         fun¡jtt€u ÒãÒknrzvétvxrjs¹ét€u ¹¯ºÒÏmËËÓÒËämË}ˆº¯ºm a  b Ò
                  →                                      →       →   →                                        → →        →
                          c º­ºÏÓÈÈËä©ä}È}( a  b  c ) ÓÈÏ©mÈˈ°«Ò°ãº( [ a , b ], c )