Аналитическая геометрия и линейная алгебра. Умнов А.Е. - 64 стр.

UptoLike

Составители: 

Рубрика: 


Ë} ÒÒ}ÈÁË ¯©m©° Ë®äÈËäÈÒ}Òlnj
ÙkÓÈãÒÒ˰}È«˺äË¯Ò«ÒãÒÓË®ÓÈ«ÈãË¯Èµ
äÓºmkp
ÈÈ

Æ xqxznun rvvélqtjz
{, , , }
Og g g
123
→→
xvxzjkqz yéjktntqn wsvxrvxzq
wév}vl¹np·nénozéqojljttnwvwjétvt nxvkwjljíqnqtnsnjqn
tjvltvpwé¹uvpzv·rq
r
x
y
z
r
x
y
z
r
x
y
z
1
1
1
1
2
2
2
2
3
3
3
3
→→
===
;;

ËÓÒË
jÏ °ãºmÒ« ÏÈÈÒ °ãËË º ÓË}ºããÒÓËȯөË mË}º¯©
rr
21
→→
Ò
rr
31
→→
¹È¯ÈããËãÓ© Ò°}ºäº® ¹ãº°}º°Ò z¯ºäË ºº ã« ¯ÈÒ°mË}º¯È
r
x
y
z
=
ãº®¹¯ÒÓÈãËÎÈË®ªº®¹ãº°}º°Òº}ÒmË}º¯
rr
→→
1
È}ÎË
ËË®¹È¯ÈããËãËÓ
jÏ °ãºmÒ« }ºä¹ãÈÓȯӺ°Ò mË}º¯ºm
rr
→→
1

rr
21
→→
Ò
rr
31
→→
¹ºãÈËä
Ò°}ºäºË¯ÈmÓËÓÒË¹ãº°}º°ÒÒäËËË
(, ,)
rrr rr r
→→
−−=
12 13 1
0
ÒãÒ
m}ºº¯ÒÓÈÓº®Áº¯äË°ºãȰӺ¹
det
xx yy zz
xxyyzz
xxyyzz
−−
−−
−−
=
111
212121
313131
0

ÈÈ

Æ xqxznun rvvélqtjz
{, , , }Og g g
123
→→
xvxzjkqz yéjktntqn wsvxrvxzq
wév}vl¹np·nénoojljttyízv·ry
r
x
y
z
0
0
0
0
=
wnéwntlqrys¹étvtntysnkv
uyknrzvéy
n
n
n
n
x
y
z
=

ËÓÒË
jÏ °ãºmÒ« ÏÈÈÒ °ãËË º ã« ¯ÈÒ°mË}º¯È
r
ãº® º}Ò
¹¯ÒÓÈãËÎÈË®ªº®¹ãº°}º°ÒmË}º¯©
rr
→→
0
Ò
n
º¯ººÓÈãÓ©
Ë
(,)rrn
→→
−=
0
0

{vézvtvéuqévkjttvp° Ò°ËäË }ºº¯ÒÓÈ
{, , , }Oe e e
123
→→
ªº°ãºmÒË¹¯Ò
ÓÒäÈËmÒ
 Ë }  Ò Ò    } È Á Ë  ¯ ©   m © °  Ë ®   ä È ˆ Ë ä È ˆ Ò } Ò   l n ‘ j 
ÙkÓÈã҈Ò˰}È«˺äˈ¯Ò«ÒãÒÓË®ÓÈ«ÈãË­¯ÈµäÓºmkp



                                                                      →     →    →
    ~ÈÈÈ              Æ xqxznun rvvélqtjz {O, g1 , g 2 , g 3 }  xvxzjkqz yéjktntqn wsvxrvxzq
    
                         wév}vl¹np·nénozéqojljtt€nwvwjétvtnxvkwjljíqnqtnsn jqn
                         tjvltvpwé¹uvpzv·rq
                                                                x1        x2         x3
                                                           →         →          →
                                                           r1 = y1 ; r2 = y 2 ; r3 = y 3 
                                                                z1        z2         z3

                                                                                                                             →   →       →     →
cËËÓÒË             jÏ ‚°ãºmÒ« ÏÈÈÒ °ãË‚ˈ ˆº ÓË}ºããÒÓËȯөË mË}ˆº¯© r2 − r1  Ò r3 − r1 
                       ¹È¯ÈããËã Ó© Ò°}ºäº® ¹ãº°}º°ˆÒ z¯ºäË ˆºº ã« ¯È҂°mË}ˆº¯È
                            x
                        →                                                       →   →
                        r = y ã ­º®¹¯ÒÓÈãËÎȝˮªˆº®¹ãº°}º°ˆÒˆº}ÒmË}ˆº¯ r − r1 ˆÈ}ÎË
                            z
                       ­‚ˈË®¹È¯ÈããËãËÓ

                                                                                            →    →       →       →       →   →
                       jÏ ‚°ãºmÒ« }ºä¹ãÈÓȯӺ°ˆÒ mË}ˆº¯ºm r − r1  r2 − r1  Ò r3 − r1   ¹ºã‚ÈËä
                                                                                                     →       →       →   →   →   →
                       Ò°}ºäºË‚¯ÈmÓËÓÒ˹㺰}º°ˆÒÒäË ËËmÒ ( r − r1 , r2 − r1 , r3 − r1 ) = 0 ÒãÒ
                       m}ºº¯ÒÓȈӺ®Áº¯äË °ºãȰӺ¹ 
                                                              x − x1              y − y1         z − z1
                                                         det x 2 − x1            y 2 − y1       z 2 − z1 = 0 
                                                             x 3 − x1            y 3 − y1       z 3 − z1
                                                                         
                 
                                                                      →     →    →
    ~ÈÈÈ              Æ xqxznun rvvélqtjz {O, g1 , g 2 , g 3 }  xvxzjkqz yéjktntqn wsvxrvxzq
    
                                                                                                x0
                                                                                      →
                         wév}vl¹np ·néno ojljttyí zv·ry r0 = y 0  wnéwntlqrys¹étv tntysnkv
                                                                                                z0
                                         nx
                                             →
                         uyknrzvéy n = n y 
                                         nz

                                                                                                                         →
cËËÓÒË             jÏ ‚°ãºmÒ« ÏÈÈÒ °ãË‚ˈ ˆº ã« ¯È҂°mË}ˆº¯È r  ã ­º® ˆº}Ò
                                                                                                →    →           →
                       ¹¯ÒÓÈãËÎȝˮªˆº®¹ãº°}º°ˆÒmË}ˆº¯© r − r0 Ò n ­‚‚ˆº¯ˆººÓÈã Ó©
                               →     → →
                       ˆË ( r − r0 , n ) = 0 
                 
                                                                                                     →       →   →
                       {vézvtvéuqévkjttvp°Ò°ˆËäË}ºº¯ÒÓȈ {O, e1 , e2 , e3 } ªˆº‚°ãºmÒ˹¯Ò
                       ÓÒäÈˈmÒ