Аналитическая геометрия и линейная алгебра. Умнов А.Е. - 65 стр.

UptoLike

Составители: 

Рубрика: 

cÈÏ Ëã
69
¯«äÈ«Ò¹ãº°}º°

nxx ny y nzz
xyz
()()()−+ + =
000
0
ÒãÒ ººÏÓÈÈ«
An Bn Cn Dnxnynz
xyz xyz
====
;;;
000
 ¹ºã
Òä
Ax By Cz D+++=
0

vã˰mÒË

p°ãÒ ¹ãº°}º°
ÏÈ
ÈÓÈ m
º¯ºÓº¯äÒ¯ºmÈÓÓº®
°Ò°ËäË }ºº¯
ÒÓÈ
{, , , }
Oe e e
123
→→
¯ÈmÓËÓÒËä
Ax By Cz D
+++=
0


Ë
ABC
++>
0
º
mË}º¯
n
A
B
C
=
º¯º
ºÓÈãËÓªº®¹ãº°}º°Ò

|¹¯ËËãËÓÒË

{Ë}º¯
n
ÓÈÏ©mÈË°«tvéujstuknrzvévu¹ãº°}º°Ò
(,)
rrn
→→
−=
0
0

|¹¯ËËãËÓÒË

{Ë}º¯
A
B
C
ÓÈÏ©mÈË°« msjktu knrzvévu ¹ãº°}º°Ò
Ax By Cz D A B C+++= + + >00,

{º¯ºÓº¯äÒ¯ºmÈÓÓº®°Ò°ËäË}ºº¯ÒÓÈãÈmÓ©®mË}º¯¹ãº°}º°Ò«mã«Ë°«Ò
Óº¯äÈãÓ©äËËmË}º¯ºä
ÈÈ

Æ xqxznun rvvélqtjz
{, , , }Og g g
123
→→
tjpzq éjxxzv¹tqn vz zv·rq
M
x
éjlqyxknrzvévu
r
x
y
z
=
lvwsvxrvxzq
(,)rrn
→→
−=
0
0

ËÓÒË
°
 °
K
˰ º¯ººÓÈãÓÈ« ¹¯ºË}Ò« º}Ò
M
ÓÈÈÓÓ ¹ãº°
}º°ºÈ
MK n
→→
=
λ
Ò
rr n
=+
λ
vä¯Ò°
°
 º}È
K
¹¯ÒÓÈãËÎÒÈÓÓº®¹ãº°}º°Ò¹ºªºäÒäËËä˰º°º
ºÓºËÓÒË
(, )
nr n r
→→
+−=
λ
0
0

c È Ï  Ë ã                                                      69
¯«äȫҹ㺰}º°ˆ 



                                                                           n x ( x − x0 ) + n y ( y − y0 ) + nz ( z − z0 ) = 0 
                        
                                 ÒãÒ º­ºÏÓÈÈ« A = n x ;                                  B = n y ; C = n z ; D = − n x x 0 − n y y 0 − n z z 0  ¹ºã‚
                                 Òä Ax + By + Cz + D = 0 
                        
                        
                        
    vã˰ˆmÒË                     p°ãÒ ¹ãº°}º°ˆ  ÏÈÈÓÈ m º¯ˆºÓº¯äÒ¯ºmÈÓÓº® °Ò°ˆËäË }ºº¯ÒÓȈ
                                     →     →      →
                                    {O, e1 , e2 , e3 } ‚¯ÈmÓËÓÒËä Ax + By + Cz + D = 0 Ë A + B + C > 0 ˆº
                                               A
                                                      →
                                   mË}ˆº¯ n = B º¯ˆººÓÈãËÓªˆº®¹ãº°}º°ˆÒ
                                               C
                        
                        
                        
                                                    →                                                                                                                 →       → →
    |¹¯ËËãËÓÒË                   {Ë}ˆº¯ n ÓÈÏ©mÈˈ°«tvéujst€uknrzvévu¹ãº°}º°ˆÒ ( r − r0 , n ) = 0 
    
                        
                                                                A
    
    |¹¯ËËãËÓÒË                   {Ë}ˆº¯                       B               ÓÈÏ©mÈˈ°«                          msjkt€u                     knrzvévu                        ¹ãº°}º°ˆÒ
    
                                                                 C
                                    Ax + By + Cz + D = 0 ,                                A + B + C > 0 
         
         
       {º¯ˆºÓº¯äÒ¯ºmÈÓÓº®°Ò°ˆËäË}ºº¯ÒÓȈãÈmÓ©®mË}ˆº¯¹ãº°}º°ˆÒ«mã«Ëˆ°«Ò
Óº¯äÈã Ó©äËËmË}ˆº¯ºä
         
         
                                                                                                  →      →      →
    ~ÈÈÈ                        Æ xqxznun rvvélqtjz {O, g1 , g 2 , g 3 }  tjpzq éjxxzv¹tqn vz zv·rq M x
    
                                                                             →
                                                                                          x∗
                                                                                                                                       →      → →
                                   éjlqyxknrzvévu r = y ∗ lvwsvxrvxzq ( r − r0 , n ) = 0 
                                                                              ∗

                                                                                          z∗
                        
    cËËÓÒË                      ° ‚°ˆ  K ˰ˆ  º¯ˆººÓÈã ÓÈ« ¹¯ºË}Ò« ˆº}Ò M ÓÈ ÈÓӂ  ¹ãº°
                                                                             →              →            →        →           →
                                         }º°ˆ ˆºÈ MK = λ n Ò r = r ∗ + λ n  vä¯Ò° 
                                             
                                             
                                   ° ‘º}È K¹¯ÒÓÈãËÎ҈ÈÓÓº®¹ãº°}º°ˆÒ¹ºªˆºä‚ÒäËˈä˰ˆº°º
                                                                           → →               →      →
                                             ºˆÓº ËÓÒË ( n , r ∗ + λ n − r0 ) = 0