Аналитическая геометрия и линейная алгебра. Умнов А.Е. - 67 стр.

UptoLike

Составители: 

Рубрика: 

cÈÏ Ëã
71
¯«äÈ«Ò¹ãº°}º°

äºÎË©¹Ë¯Ë¹Ò°ÈÓÈmmÒË
Ax By Cz D
Ax By Cz D
1111
111 2
0
0
+++=
+++ =
λ

¯Ò
21
DD
λ
ÓÈªÒ²¹ãº°}º°«²ÓËºÒ²ºË} È ¹¯Ò
21
DD
λ
=
m°Ë
º}ÒºÒËºÒºÏÓÈÈË¹È¯ÈããËãÓº°¹ãº°}º°Ë®
iº}ÈÎËäÓ˺²ºÒ亰
° ¹ãº°}º°Ò
Ax By Cz D
1111
0
+++=
Ò
Ax By Cz D
2222
0
+++=
¹È¯Èã
ãËãÓ© ºÈ ºÓÒ ºãÎÓ© ¹Ë¯Ë°Ë}ÈºÓÒÒËÎË}ºº¯ÒÓÈÓ©Ë ¹ãº°}º°Ò
¹º¹È¯ÈããËãÓ©ä¹¯«ä©ä
°ã«º¹¯ËËãËÓÓº°ÒªÒäÒ}ºº¯ÒÓÈÓ©äÒ¹ãº°}º°«äÒ«mã«°« ¹ãº°
}º°Òã«}ºº¯©²
x=0
Ò
z=0
ÒÓÒÒ¹Ë¯Ë°ËËÓÒ«°ººmË°m ÒË¹Ë¯mº®ÒÏ
}ºº¯ÒÓÈÓ©²¹ãº°}º°Ë®º¹¯ËËã«°«°Ò°ËäÈäÒ¯ÈmÓËÓÒ®
x
By Cz D
=
++=
0
0
111
Ò
x
By Cz D
=
++=
0
0
222

ȯÈããËãÓº° ªÒ² ¹¯«ä©² ºÏÓÈÈË °˰mºmÈÓÒË
λ
0
È}ºº º
BBCC
1212
==
λλ
;

cȰ°äÈ¯ÒmÈ«°ãÈ®
z=0

¹ºãÈËäÈÓÈãºÒÓ°Ò°Ëä°ººÓºËÓÒ®
z
Ax By D
=
++=
0
0
11 1
Ò
z
Ax By D
=
++=
0
0
22 2

Óº ÒÏ °ãºmÒ«
21
BB
λ
=
Ò¹È¯ÈããËãÓº°Ò ªº® ¹È¯© ¹¯«ä©² m©Ë}ÈË º
21
AA
λ
=

˺¯ËäÈº}ÈÏÈÓÈ

vã˰mÒË

iã«ººº©¯ÈmÓËÓÒ«

Ax By Cz D A B C
1111 111
00
+++= ++>
,
Ò

Ax By Cz D A B C
2222 222
00
+++= ++>
,
©ãÒ¯ÈmÓËÓÒ«äÒ ºÓº® Òº®ÎË ¹ãº°}º°ÒÓ˺²ºÒäºÒ º°È
ºÓºº©°˰mºmÈãºÒ°ãº
λ
0
È}ºËº

AABBCCDD
12121212
====
λλλλ
;;;
c È Ï  Ë ã                                                      71
¯«äȫҹ㺰}º°ˆ 



                  äºÎˈ­©ˆ ¹Ë¯Ë¹Ò°ÈÓÈmmÒË
                  
                                                                                   A1 x + B1 y + C1 z + D1 = 0
                                                                                                                
                                                                                   A1 x + B1 y + C1 z + λD2 = 0
                  
                  ¯Ò D1 ≠ λD2  ÓÈ ªˆÒ² ¹ãº°}º°ˆ«² Óˈ º­Ò² ˆºË} È ¹¯Ò D1 = λD2   m°Ë
                  ˆº}Òº­ÒˈºÒºÏÓÈÈˈ¹È¯ÈããËã Óº°ˆ ¹ãº°}º°ˆË®
        
              iº}ÈÎËäÓ˺­²ºÒ亰ˆ 
        
                  ‚°ˆ  ¹ãº°}º°ˆÒ A1 x + B1 y + C1 z + D1 = 0  Ò A2 x + B2 y + C2 z + D2 = 0  ¹È¯Èã
                  ãËã Ó© ‘ºÈ ºÓÒ ºãÎÓ© ¹Ë¯Ë°Ë}Ȉ  ºÓÒ Ò ˆË ÎË }ºº¯ÒÓȈөË ¹ãº°}º°ˆÒ
                  ¹º¹È¯ÈããËã ө乯«ä©ä
        
                  ‚°ˆ 㫺¹¯ËËãËÓÓº°ˆÒªˆÒäÒ}ºº¯ÒÓȈөäҹ㺰}º°ˆ«äÒ«mã« ˆ°«¹ãº°
                  }º°ˆÒã«}ºˆº¯©²x=0Òz=0ÒÓÒҹ˯˰ËËÓÒ«°ººˆmˈ°ˆm‚ Ò˹˯mº®ÒÏ
                  }ºº¯ÒÓȈө²¹ãº°}º°ˆË®­‚‚ˆº¹¯ËË㫈 °«°Ò°ˆËäÈäÒ‚¯ÈmÓËÓÒ®
                  
                                                                     x=0                           x=0
                                                                                   Ò                       
                                                              B1 y + C1 z + D1 = 0          B2 y + C2 z + D2 = 0
                  
                  È¯ÈããËã Óº°ˆ  ªˆÒ² ¹¯«ä©² ºÏÓÈÈˈ °‚Ë°ˆmºmÈÓÒË λ≠0 ˆÈ}ºº ˆº
                   B1 = λ B2 ; C1 = λ C2 
                  
                 cȰ°äȈ¯ÒmÈ«°ã‚È®z=0¹ºã‚ÈËäÈÓÈãºÒӂ °Ò°ˆËä‚°ººˆÓº ËÓÒ®
                  
                                                                     z=0                           z=0
                                                                                  Ò                       
                                                             A1 x + B1 y + D1 = 0          A2 x + B2 y + D2 = 0
                  
                  Óº ÒÏ ‚°ãºmÒ« B1 = λ B2  Ò ¹È¯ÈããËã Óº°ˆÒ ªˆº® ¹È¯© ¹¯«ä©² m©ˆË}Èˈ ˆº
                   A1 = λ A2 
        
        ‘˺¯ËäȺ}ÈÏÈÓÈ
                  
                  
    vã˰ˆmÒË                     i㫈ººˆº­©‚¯ÈmÓËÓÒ«
                            
                                    A1 x + B1 y + C1 z + D1 = 0 ,                                             A1 + B1 + C1 > 0 Ò
                                    A2 x + B2 y + C2 z + D2 = 0 , A2 + B2 + C2 > 0 
                                   
                                   ­©ãÒ ‚¯ÈmÓËÓÒ«äÒ ºÓº® Ò ˆº® ÎË ¹ãº°}º°ˆÒ Ó˺­²ºÒäº Ò º°ˆÈ
                                   ˆºÓºˆº­©°‚Ë°ˆmºmÈãºÒ°ãºλ≠0ˆÈ}ºËˆº
                                   
                                    A1 = λ A2 ; B1 = λ B2 ; C1 = λ C2 ; D1 = λ D2