Аналитическая геометрия и линейная алгебра. Умнов А.Е. - 69 стр.

UptoLike

Составители: 

Рубрика: 

cÈÏ Ëã
73
¯«äÈ«Ò¹ãº°}º°

°
¯ÈmÓËÓÒË ¹¯«
亮 m ¹È¯È
äË¯Ò˰}º®
Áº¯äË
°º}È°¯ÈÒ°mË}º¯ºä
r
x
y
z
=
ãËÎÒ Ó È ¹¯«äº® m ¹¯º
°¯ÈÓ°mË ÒäËË® ÓËÓãËmº® Óȹ¯Èmã«Ò® mË}º¯
a
a
a
a
x
y
z
=
Ò
¹¯º²º«Ë® ˯ËÏ º}
r
x
y
z
0
0
0
0
=
 ºÈ ÒÏ }ºããÒÓËȯӺ°Ò mË}º¯ºm
a
Ò
rr
→→
0
°ãËË º ¯ÈmÓËÓÒË ¹¯«äº® m ¹¯º°¯ÈÓ°mË ºãÎÓº
ÒäËmÒ
rr a
→→
=+
0
τ
°¯ÈmÓËÓÒË
¹¯«äº® m }ÈÓº
ÓÒ˰}º® Áº¯
äË
p°ãÒ Ò°}ãÒ ¹È¯ÈäË¯
τ
ÒÏ °}È㫯Ӻ® ÏȹҰÒ ¯ÈmÓËÓÒ«
rr a
→→
=+
0
τ
xx a
yy a
zz a
x
y
z
=+
=+
=+
0
0
0
τ
τ
τ

º¹ºãÈË°«È}ÓÈÏ©mÈËäºËrjtvtq·nxrvnyéjktntqnwé¹uvp
xx
a
yy
a
zz
a
xyz
=
=
000

²º«Ï˰¹¯ÈmÒãÓËËºmº¯Òº°Ò°ËäË¯ÈmÓËÓÒ®ÏÈÈÒ²¹¯«
ä m ¹¯º°¯ÈÓ°mË vãÈ®
aaa
xyz
=
0
¯È°°äÈ¯ÒmÈË°« ÈÓÈãºÒÓº
¹°
°¯ÈmÓËÓÒË ¹¯«
亮 ¹¯º²º«
Ë® ˯ËÏ mË
Ó˰ºm¹ÈÈ
ÒË º}Ò
r
x
y
z
1
1
1
1
=
Ò
r
x
y
z
2
2
2
2
=
º°}ºã} Óȹ¯Èmã«Ò® mË}º¯ ÈÓÓº® ¹¯«äº®
a
}ºããÒÓËȯËÓ
mË}º¯
rr
xx
yy
zz
21
21
21
21
→→
−=
 º ¯ÈmÓËÓÒË ¹¯«äº® m mË}º¯Óº® Áº¯äË
äºÎÓº¹¯Ë°ÈmÒmmÒË
rr rr
→→
=+
121
τ
()
ÒãÒ
rrr
→→
=− +
()1
12
ττ

vººmË°mËÓÓºm}ºº¯ÒÓÈȲ¹º°ãËÒ°}ãËÓÒ«¹È¯ÈäË¯È
τ
¹ºã
ÈËä°ººÓºËÓÒ«
c È Ï  Ë ã                                                      73
¯«äȫҹ㺰}º°ˆ 



                                                                            x
                                                                                                                         →
°¯ÈmÓËÓÒË ¹¯«                  ‚°ˆ  ˆº}È ° ¯È҂°mË}ˆº¯ºä r = y  ãËÎ҈ ÓÈ ¹¯«äº® m ¹¯º
     亮 m ¹È¯È
     äˈ¯Ò˰}º®                                                            z
     Áº¯äË
                                                                                               ax
                                                                                                                                                                                 →
                                      °ˆ¯ÈÓ°ˆmË ÒäË Ë® ÓËӂãËmº® Óȹ¯Èmã« Ò® mË}ˆº¯ a = a y  Ò
                                                                                                az
                                                                     x0
                                                                                                    →
                                      ¹¯º²º«Ë® ˯ËÏ ˆº}‚ r0 = y 0  ˆºÈ ÒÏ }ºããÒÓËȯӺ°ˆÒ mË}ˆº¯ºm
                                                                     z0
                                       →             →       →
                                       a  Ò r − r0  °ãË‚ˈ ˆº ‚¯ÈmÓËÓÒË ¹¯«äº® m ¹¯º°ˆ¯ÈÓ°ˆmË ºãÎÓº
                                                                →        →          →
                                      Òäˈ mÒ r = r0 + τ a 
                                      
° ¯ÈmÓËÓÒË                       p°ãÒ Ò°}ã ҈  ¹È¯Èäˈ¯ τ ÒÏ °}È㫯Ӻ® ÏȹҰÒ ‚¯ÈmÓËÓÒ«
     ¹¯«äº® m }ÈÓº                 →        →          →
     ÓÒ˰}º® Áº¯
     äË
                                       r = r0 + τ a 
                                       
                                                                                                           x = x0 + τ a x
                                                                                                          
                                                                                                           y = y 0 + τ a y 
                                                                                                          z = z +τ a
                                                                                                                0       z
                                                                        
                                       ˆº¹ºã‚Èˈ°«ˆÈ}ÓÈÏ©mÈËäºËrjtvtq·nxrvnyéjktntqnwé¹uvp
                                       
                                                                                                x − x0 y − y0 z − z0
                                                                                                      =      =       
                                                                                                  ax     ay     az
                                      
                                      ²ºˆ«Ï˰ ¹¯ÈmÒã ÓË˺mº¯Òˆ º°Ò°ˆËäË‚¯ÈmÓËÓÒ®ÏÈÈ Ò²¹¯«
                                      ä‚  m ¹¯º°ˆ¯ÈÓ°ˆmË vã‚È® a x a y a z = 0  ¯È°°äȈ¯ÒmÈˈ°« ÈÓÈãºÒÓº
                                      ¹ ° 
                                      
                                      
    
                                                                                                                                                                       →
° ¯ÈmÓËÓÒË ¹¯«                  º°}ºã }‚ Óȹ¯Èmã« Ò® mË}ˆº¯ ÈÓÓº® ¹¯«äº® a  }ºããÒÓËȯËÓ
     亮 ¹¯º²º«
     Ë® ˯ËÏ mË                                    x 2 − x1
     Ó˰ºm¹ÈÈ                                            →       →
     ÒË      ˆº}Ò                 mË}ˆº¯‚ r2 − r1 = y 2 − y1  ˆº ‚¯ÈmÓËÓÒË ¹¯«äº® m mË}ˆº¯Óº® Áº¯äË
             x1                                          z 2 − z1
        →
        r1 = y1                       äºÎÓº¹¯Ë°ˆÈm҈ mmÒË
                                       
             z1                                                               →        →            →       →                  →                     →          →
                               Ò                                           r = r1 + τ (r2 − r1 ) ÒãÒ r = (1 − τ ) r1 + τ r2 
                  x2                  
        →
        r2 = y 2                      vººˆmˈ°ˆmËÓÓºm}ºº¯ÒÓȈȲ¹º°ãËÒ°}ã ËÓÒ«¹È¯Èäˈ¯È τ¹ºã‚
                                      ÈËä°ººˆÓº ËÓÒ«
             z2