Аналитическая геометрия и линейная алгебра. Умнов А.Е. - 71 стр.

UptoLike

Составители: 

Рубрика: 

cÈÏ Ëã
75
¯«äÈ«Ò¹ãº°}º°

mÓÒäÈÓÒË º Ò°ãÈ
a
x

a
y
Ò
a
z
ÓË ¯ÈmÓ© ÓãºÓºm¯ËäËÓÓº Ò º }¯ºäË ºº
°¹¯ÈmËãÒm©°ººÓºËÓÒ«
bazay
baxaz
bayax
xy z
yz x
zx y
=−
=−
=−
00
00
00


R

Rr
→→
0

d

a

r
0
 O
èqxytvr
sÈ}ºÓË¯È°°º«ÓÒË
d
ºÓË}ºº¯º®º}Ò
° ¯ÈÒ°mË}º¯ºä
R
º ¹¯«äº®
rr a
→→
=+
0
τ
m
¹¯º°¯ÈÓ°mË äºÎÓº ÓÈ®Ò mº°¹ºãϺmÈmÒ°
Ëä °mº®°mºä º
S
¹ãºÈ ¹È¯ÈããËãº
¯ÈääÈ ¹º°¯ºËÓÓºº ÓÈ ¹È¯Ë mË}º¯ºm ¯ÈmÓÈ
äºã Ò² mË}º¯Óºº ¹¯ºÒÏmËËÓÒ« jÏ ¯Ò
°Ó}È¹ºãÈËä
d
S
a
Rra
a
==
→→
[,]
.
0
cËËÓÒË˺äË¯Ò˰}Ò²ÏÈÈäËºÈäÒmË}º¯Óº®ÈãË¯©
wÁÁË}ÒmÓº° Ò°¹ºãϺmÈÓÒ« äËººm mË}º¯Óº®ÈãË¯© ¹¯Ò ¯ËËÓÒÒ ˺
äË¯Ò˰}Ò²ÏÈÈmºäÓººäÏÈmÒ°Ò º¹¯ÈmÒãÓººm©º¯È ¹¯Ë°ÈmãËÓÒ«˺äË¯Ò
˰}Ò²°ãºmÒ®mmË}º¯Óº®Áº¯äË
sȹ¯Òä˯˰ãÒmm˰Ò¯ÈmÓº°ÒãÓ©ËÒ°¹ºãÏËä©ämªãËäËÓȯӺ®˺äË¯ÒÒ
|¹¯ËËãËÓÒË

ãºä äËÎ ¹ãº°}º°«äÒ
(,)rrn
→→
−=
01 1
0
Ò
(,)rr n
→→
−=
02 2
0
ÓÈÏ©mÈË°«
ºãäËÎÒ²Óº¯äÈãÓ©äÒmË}º¯ÈäÒ
n
1
Ò
n
2

|¹¯ËËãËÓÒË

ãºääËÎ¹ãº°}º°
(,)
rrn
→→
−=
0
0
Ò¹¯«äº®
rr a
→→
=+
0
τ
ÓÈÏ©mÈË°«
ºã
π
α
2
Ë
α
ºãäËÎmË}º¯ÈäÒ
n
Ò
a

º Ò°ãËÓÒË ãºm º¹¯ËËã«Ò² mÏÈÒäÓºË ¯È°¹ºãºÎËÓÒË ¹¯«ä©² Ò ¹ãº°}º°Ë® m
¹¯º°¯ÈÓ°mËäºÎË©°mËËÓº}ÓȲºÎËÓÒ°}È㫯ө²¹¯ºÒÏmËËÓÒ®°ººmË°
mÒ²Óº¯äÈãÓ©²ÒÓȹ¯Èmã«Ò²mË}º¯ºm
{ ÈãÒȲ  ¹¯ÒmËËÓ© ÓË}ºº¯©Ë ÒÏ Ȱº ¹º¯Ëã«Ë䩲 Áº¯ä
m©¯ÈÎËÓÒ«˺äË¯Ò˰}Ò²°ãºmÒ®¹¯Ò¹ºäºÒmË}º¯Ó©²º¹Ë¯ÈÒ®
c È Ï  Ë ã                                                      75
¯«äȫҹ㺰}º°ˆ 



mÓÒäÈÓÒË ˆº Ò°ãÈ a x  a y  Ò a z  ÓË ¯ÈmÓ© ӂã  ºÓºm¯ËäËÓÓº Ò ˆº }¯ºäË ˆºº
                         b x = a y z 0 − a z y 0
                         
°¹¯ÈmËãÒm©°ººˆÓº ËÓÒ« b y = a z x 0 − a x z 0 
                         b = a y − a x
                          z     x 0        y 0
                  
             →
                                                                                                       sÈ}ºÓ˯Ȱ°ˆº«ÓÒË dºˆÓË}ºˆº¯º®ˆº}Ò
   R                                                                                                                                  →                                  →       →          →
                                                                                           ° ¯È҂°mË}ˆº¯ºä R  º ¹¯«äº® r = r0 + τ a  m
                               →      →
   R − r0                                                                ¹¯º°ˆ¯ÈÓ°ˆmË äºÎÓº ÓÈ®ˆÒ mº°¹ºã ϺmÈm Ò° 
                                                                                           ˆËä °mº®°ˆmºä ˆº S  ¹ãºÈ  ¹È¯ÈããËãº
                d                                                                          ¯ÈääÈ ¹º°ˆ¯ºËÓÓºº ÓÈ ¹È¯Ë mË}ˆº¯ºm ¯ÈmÓÈ
                                                                     →                      äº‚ã  Ò² mË}ˆº¯Óºº ¹¯ºÒÏmËËÓÒ« jÏ ¯Ò
   a                                               °‚Ó}ȹºã‚ÈËä
                                              →                                                    
   r0                                                                                                                      →       → →
                                                                                                                                                    [ R − r0 , a ]
                                                                                                                                        S
   O                                                                                                                     d=         →
                                                                                                                                               =             →
                                                                                                                                                                                .
                                                                                                                                       a                     a
                             èqxytvr
                  
                  
                  
                  
cËËÓÒË˺äˈ¯Ò˰}Ò²ÏÈÈäˈºÈäÒmË}ˆº¯Óº®ÈãË­¯©
       
       
       
       wÁÁË}ˆÒmÓº°ˆ  Ò°¹ºã ϺmÈÓÒ« äˈººm mË}ˆº¯Óº® ÈãË­¯© ¹¯Ò ¯Ë ËÓÒÒ ˺
äˈ¯Ò˰}Ò²ÏÈÈmºäÓººäÏÈmҰ҈ºˆ¹¯ÈmÒã Óººm©­º¯È¹¯Ë°ˆÈmãËÓÒ«˺äˈ¯Ò
˰}Ò²‚°ãºmÒ®mmË}ˆº¯Óº®Áº¯äË
       
                  
                  sȹ¯Òä˯˰ãÒmm˰ˆÒ¯ÈmÓº°Òã Ó©ËÒ°¹ºã ςËä©ämªãËäËӈȯӺ®˺äˈ¯ÒÒ
                  
                                                                                                      →        →      →                        →        →        →
  |¹¯ËËãËÓÒË                     ãºä äË΂ ¹ãº°}º°ˆ«äÒ ( r − r01 , n1 ) = 0  Ò ( r − r02 , n 2 ) = 0  ÓÈÏ©mÈˈ°«
                                                                                                                           →            →
                                   ‚ºãäË΂ҲӺ¯äÈã Ó©äÒmË}ˆº¯ÈäÒ n1 Ò n 2 
                                   
                                                                                                  →       → →                                           →        →         →
  |¹¯ËËãËÓÒË                     ãºääË΂¹ãº°}º°ˆ                                        ( r − r0 , n ) = 0 Ò¹¯«äº® r = r0 + τ a ÓÈÏ©mÈˈ°«
  
                                               π                                     →     →
                                   ‚ºã         − α Ëα‚ºãäË΂mË}ˆº¯ÈäÒ n Ò a 
                                               2
        
ˆº m©Ò°ãËÓÒË ‚ãºm º¹¯ËËã« Ò² mÏÈÒäÓºË ¯È°¹ºãºÎËÓÒË ¹¯«ä©² Ò ¹ãº°}º°ˆË® m
¹¯º°ˆ¯ÈÓ°ˆmËäºÎˈ­©ˆ °mËËÓº}ÓȲºÎËÓÒ °}È㫯ө²¹¯ºÒÏmËËÓÒ®°ººˆmˈ°ˆ
m‚ Ò²Óº¯äÈã Ó©²ÒÓȹ¯Èmã« Ò²mË}ˆº¯ºm
        
        { ˆÈ­ãÒȲ  ¹¯ÒmËËÓ© ÓË}ºˆº¯©Ë ÒÏ Ȱˆº ‚¹ºˆ¯Ë­ã«Ë䩲 Áº¯ä
m©¯ÈÎËÓÒ«˺äˈ¯Ò˰}Ò²‚°ãºmÒ®¹¯Ò¹ºäºÒmË}ˆº¯Ó©²º¹Ë¯ÈÒ®