Аналитическая геометрия и линейная алгебра. Умнов А.Е. - 72 стр.

UptoLike

Составители: 

Рубрика: 


Ë} ÒÒ}ÈÁË ¯©m©° Ë®äÈËäÈÒ}Òlnj
ÙkÓÈãÒÒ˰}È«˺äË¯Ò«ÒãÒÓË®ÓÈ«ÈãË¯Èµ
äÓºmkp
˺äË¯Ò˰}ºË°ãºmÒË
{ºÏäºÎÓÈ«mË}º¯ÓÈ«Áº¯äÈ¹¯Ë°ÈmãËÓÒ«
zºããÒÓËȯӺ°¹¯«ä©²
rr a
→→
=+
01 1
τ
Ò
rr a
→→
=+
02 2
τ

°v˰mË
λ
0
È}ºËº
aa
12
→→
=
λ
°
[, ]
aa o
12
→→
=
|¯ººÓÈãÓº°¹¯«ä©²
rr a
→→
=+
01 1
τ
Ò
rr a
→→
=+
02 2
τ

(, )
aa
12
0
→→
=
zºããÒÓËȯӺ°¹¯«ä©²
rr a
→→
=+
0
τ
Ò
(,)
(,)
nr d
nr d
11
22
→→
→→
=
=

°v˰mË
λ
0
È}ºËº
ann
→→
=
λ
[, ]
12

°
[,[ , ]]
an n o
→→→
=
12
|¯ººÓÈãÓº°¹¯«ä©²
rr a
→→
=+
0
τ
Ò
(,)
(,)
nr d
nr d
11
22
→→
→→
=
=


(, , )
an n
→→
=
12
0
vºm¹ÈËÓÒË¹¯«ä©²
rr a
→→
=+
01 1
τ
Ò
rr a
→→
=+
02 2
τ
° v˰m
λ
0
Ò
µ
0
È}ÒË º
aa
12
→→
=
λ
Ò
rr a
01 02 1
→→
−=
µ
°
[, ]
aa o
12
→→
=
Ò
[,]
rra o
01 02 1
→→
−=
˯˰ËËÓÒË¹¯«ä©²
rr a
→→
=+
01 1
τ
Ò
rr a
→→
=+
02 2
τ

[, ]
aa o
12
→→
Ò
(,,)
rraa
01 02 1 2
0
→→
−=
°ãºmÒË °}¯ËÒmÈÓÒ« ¹¯«ä©²
rr a
→→
=+
01 1
τ
Ò
rr a
→→
=+
02 2
τ

[, ]
aa o
12
→→
Ò
(,,)
rraa
01 02 1 2
0
→→
−≠
Òjisq|j|Óº°ÒËãÓÈ«º¯ÒËÓÈÒ«¹¯«ä©²m¹¯º°¯ÈÓ°mË
 Ë }  Ò Ò    } È Á Ë  ¯ ©   m © °  Ë ®   ä È ˆ Ë ä È ˆ Ò } Ò   l n ‘ j 
ÙkÓÈã҈Ò˰}È«˺äˈ¯Ò«ÒãÒÓË®ÓÈ«ÈãË­¯ÈµäÓºmkp



                                                                                                   
        €Ëºäˈ¯Ò˰}ºË‚°ãºmÒË                          {ºÏäºÎÓÈ«mË}ˆº¯ÓÈ«Áº¯äȹ¯Ë°ˆÈmãËÓÒ«
                                                     
                                                                                                                          →    →
 zºããÒÓËȯӺ°ˆ ¹¯«ä©²                                        °v‚Ë°ˆm‚ˈ λ ≠ 0 ˆÈ}ºËˆº a 1 = λ a 2 
  →       →       →       →      →        →                    
     r = r01 + τ a 1 Ò r = r02 + τ a 2                             →       →           →
                                                               °[a1 , a 2 ] = o 
                                                               
                                                                  →    →
 |¯ˆººÓÈã Óº°ˆ ¹¯«ä©²                                        (a1 , a 2 ) = 0 
  →       →       →       →      →        →
     r = r01 + τ a 1 Ò r = r02 + τ a 2 
 
                                                                                                                          →   →     →
                                       °v‚Ë°ˆm‚ˈ λ ≠ 0 ˆÈ}ºËˆº a = λ [n1 , n 2 ] 
                                           →     →       →
 zºããÒÓËȯӺ°ˆ ¹¯«ä©² r = r0 + τ a  
     → →                                                              →       →       →       →
     (n , r ) = d 1                                           °[ a ,[ n1 , n2 ]] = o 
 Ò  →1 →             
    (n 2 , r ) = d 2                                         
 
                                                                          → →         →
 |¯ˆººÓÈã Óº°ˆ ¹¯«ä©²                                             ( a , n1 , n2 ) = 0 
                       → →
  →       →       →    (n , r ) = d 1
     r = r0 + τ a Ò  →1 →             
                      (n 2 , r ) = d 2
 
 
                                                               ° v‚Ë°ˆm‚ ˆ λ ≠ 0  Ò µ ≠ 0  ˆÈ}ÒË ˆº
 vºm¹ÈËÓÒ˹¯«ä©²
                                                                        →              →           →   →           →
  →       →       →       →      →        →
     r = r01 + τ a 1 Ò r = r02 + τ a 2                               a1 = λ a 2 Ò r01 − r02 = µ a1 
                                                               
                                                                           →       →       →           →       →   →       →
                                                               ° [a1 , a 2 ] = o Ò [r01 − r02 , a1 ] = o 
                                                                            
                                                                            
                                                                           →      →           →           →       →   →   →
 Ë¯Ë°ËËÓÒ˹¯«ä©²                                            [a1 , a 2 ] ≠ o Ò ( r01 − r02 , a1 , a 2 ) = 0 
  →       →       →       →      →        →
     r = r01 + τ a 1 Ò r = r02 + τ a 2 
 
                                                                           →      →           →           →       →   →   →
 °ãºmÒË             °}¯ËÒmÈÓÒ«              ¹¯«ä©²  [a1 , a 2 ] ≠ o Ò ( r01 − r02 , a1 , a 2 ) ≠ 0 
  →       →       →       →      →        →
     r = r01 + τ a 1 Ò r = r02 + τ a 2 
 
              
              
              
                      Òjisq|j|ˆÓº°ÒˆËã ÓÈ«º¯ÒËӈÈÒ«¹¯«ä©²m¹¯º°ˆ¯ÈÓ°ˆmË