Аналитическая геометрия и линейная алгебра. Умнов А.Е. - 74 стр.

UptoLike

Составители: 

Рубрика: 


Ë} ÒÒ}ÈÁË ¯©m©° Ë®äÈËäÈÒ}Òlnj
ÙkÓÈãÒÒ˰}È«˺äË¯Ò«ÒãÒÓË®ÓÈ«ÈãË¯Èµ
äÓºmkp
˺äË¯Ò˰}ºË°ãºmÒË
{ºÏäºÎÓÈ«mË}º¯ÓÈ«Áº¯äÈ¹¯Ë°ÈmãËÓÒ«
ȯÈããËãÓº° ¹¯«äº®
rr a
→→
=+
01
τ
Ò ¹ãº°}º°Ò
rr p q
→→
=+ +
02
ϕθ
° v˰m
λµ λ µ
;;
+>
0
È}ÒË º
apq
→→
=+
λµ
Ò
(,,)
rrpq
01 02
0
→→
−≠

°
(, , )
(,,)
apq
rrpq
→→
→→
=
−≠
0
0
01 02

¯ÒÓÈãËÎÓº° ¹¯«äº®
rr a
→→
=+
01
τ
¹ãº°}º°Ò
rr p q
→→
=+ +
02
ϕθ
° v˰m
λµ λ µ
;;
+>
0
È}ÒË º
apq
→→
=+
λµ
Ò
(,,)
rrpq
01 02
0
→→
−=

°
(, , )
(,,)
apq
rrpq
→→
→→
=
−=
0
0
01 02

|¯ººÓÈãÓº° ¹¯«äº®
rr a
→→
=+
01
τ
¹ãº°}º°Ò
rr p q
→→
=+ +
02
ϕθ
° v˰mË
λ
0
È}ºËº
apq
→→
=
λ
[, ]

°
[,[, ]]
apq o
→→
=

ȯÈããËãÓº° ¹¯«äº®
rr a
→→
=+
0
τ
Ò ¹ãº°}º°Ò
(,)
nr d
→→
=
(,)
an
→→
=
0
¹¯Ò°ãºmÒÒ
(, )
nr d
→→
0

¯ÒÓÈãËÎÓº° ¹¯«äº®
rr a
→→
=+
0
τ
¹ãº°}º°Ò
(,)
nr d
→→
=
(,)
(,)
an
rn d
→→
→→
=
=
0
0

|¯ººÓÈãÓº° ¹¯«äº®
rr a
→→
=+
0
τ
¹ãº°}º°Ò
(,)
nr d
→→
=
° v˰mË
λ
0
È}ºËº
an
→→
=
λ

°
[,]
an o
→→
=

 Ë }  Ò Ò    } È Á Ë  ¯ ©   m © °  Ë ®   ä È ˆ Ë ä È ˆ Ò } Ò   l n ‘ j 
ÙkÓÈã҈Ò˰}È«˺äˈ¯Ò«ÒãÒÓË®ÓÈ«ÈãË­¯ÈµäÓºmkp



                                                                                            
     €Ëºäˈ¯Ò˰}ºË‚°ãºmÒË                        {ºÏäºÎÓÈ«mË}ˆº¯ÓÈ«Áº¯äȹ¯Ë°ˆÈmãËÓÒ«
                                            
 È¯ÈããËã Óº°ˆ                       ¹¯«äº® ° v‚Ë°ˆm‚ ˆ                       λ;µ ;            λ + µ > 0  ˆÈ}ÒË ˆº
  →       →      →                                           →        →        →         →      →    → →
     r = r01 + τ a       Ò      ¹ãº°}º°ˆÒ                 a = λ p+ µ q Ò ( r01 − r02 , p, q ) ≠ 0 
  →       →       →      →                            
     r = r02 + ϕ p + θ q                             
                                                           → → →
                                                           ( a , p, q ) = 0
                                                      ° → → → →                  
                                                           ( r01 − r02 , p, q ) ≠ 0
                                              
                                              
 ¯ÒÓÈãËÎÓº°ˆ                       ¹¯«äº® ° v‚Ë°ˆm‚ ˆ                       λ;µ ;            λ + µ > 0  ˆÈ}ÒË ˆº
  →       →      →                                           →        →        →         →      →    → →
     r = r01 + τ a               ¹ãº°}º°ˆÒ                 a = λ p+ µ q Ò (r01 − r02 , p, q ) = 0 
  →       →       →      →                            
     r = r02 + ϕ p + θ q                             
                                                           → → →
                                                            ( a , p, q ) = 0
                                                      ° → → → →                 
                                                           (r01 − r02 , p, q ) = 0
                                                      
                                                      
                                                                                                            →         → →
 |¯ˆººÓÈã Óº°ˆ                    ¹¯«äº® ° v‚Ë°ˆm‚ˈ λ ≠ 0 ˆÈ}ºËˆº a = λ [ p , q ] 
  →       →      →                           
     r = r01 + τ a               ¹ãº°}º°ˆÒ       → → →            →
  →       →       →      →                   °[ a ,[ p , q ]] = o 
     r = r02 + ϕ p + θ q 
                                             
 
                                                         → →                                    → →
 È¯ÈããËã Óº°ˆ                       ¹¯«äº®  ( a , n) = 0 ¹¯Ò‚°ãºmÒÒ ( n , r0 ) ≠ d 
  →      →      →
     r = r0 + τ a       Ò       ¹ãº°}º°ˆÒ
     → →
  ( n, r ) = d 
 
 
                                              → →
 ¯ÒÓÈãËÎÓº°ˆ                       ¹¯«äº® ( a , n) = 0
  →      →      →                             → →         
     r = r0 + τ a                ¹ãº°}º°ˆÒ (r0 , n) = d
     → →
  ( n, r ) = d 
 
                                                                                                            →        →
 |¯ˆººÓÈã Óº°ˆ                    ¹¯«äº® ° v‚Ë°ˆm‚ˈ λ ≠ 0 ˆÈ}ºËˆº a = λ n 
  →      →      →                            
     r = r0 + τ a                ¹ãº°}º°ˆÒ       → →        →
     → →                                     °[ a , n ] = o 
  ( n, r ) = d