Аналитическая геометрия и линейная алгебра. Умнов А.Е. - 76 стр.

UptoLike

Составители: 

Рубрика: 


Ë} ÒÒ}ÈÁË ¯©m©° Ë®äÈËäÈÒ}Òlnj
ÙkÓÈãÒÒ˰}È«˺äË¯Ò«ÒãÒÓË®ÓÈ«ÈãË¯Èµ
äÓºmkp
°¯ÈmÓËÓÒË¹¯«äº®m¹¯º°¯ÈÓ°mË ÒäËË
rr a
→→
=+
0
τ
¹¯ÒËä¹¯Ë¹º
ãºÎÒäº
r
0
Ò
a
ÓË}ºããÒÓËȯөºÈm˰mËÓº¯äÈãÓ©²mË}º¯ºm¹ 㺰}º°Ë®
}ºº¯©Ë ¹Ë¯Ë°Ë}È°« ¹º ÈÓÓº® ¹¯«äº® äºÎÓº mÏ«
nar
10
→→
=
[, ]
Ò
nan
21
→→
=
[, ]
 jÏ
mº¯ºº¯ÈmËÓ°mÈÒ°¹ºãÏ«¹¹ºãÈËä
n an a ar ar a aar ar a a r
21 0 0 00
2
0
→→ →→ →→
== = =
[, ] [,[, ]] (, ) (,) (, )
{}È˰mË
d
1
Ò
d
2
ºËmÒÓºäºÎÓº¹¯ÒÓ«
dnr
110
=
→→
(,)
Ò
dnr
220
=
→→
(,)

vãÈ®}ºããÒÓËȯө²mË}º¯ºm
r
0
Ò
a
¯È°°äº¯ÒË°È亰º«ËãÓº
{ÏÈ}ãËÓÒË¯È°°äº¯Òäm }È Ë°mË¹¯Òä˯ºm¯Ë ËÓÒËÓË}ºº¯©²°˯˺äË
¯Ò˰}Ò²ÏÈÈäËºÈäÒmË}º¯Óº®ÈãË¯©
ÈÈ

bjt wsvxrvxz
(,)
nr d
→→
=
0
qwnénxnrjíj¹ nn wé¹uj¹
rr a
→→
=+
0
τ
 Ëjp
zqéjlqyxknrzvézv·rqwnénxn·ntq¹ëzvpwé¹uvpqwsvxrvxzq
ËÓÒË

a
K

n

r
0

r
O
èqxytvr
° ~ÈäËÒäº˰ãÒ
(,)
na
→→
=
0
ºãÒº¯Ë
ËÓÒ® ÓË ãÒº m°« ¹¯«äÈ« ãËÎÒ ÓÈ
ÈÓÓº® ¹ãº°}º°Ò ºªºä Ëä ÈãËË
¹ºãÈÈº
(,)
na
→→
0

° jäËËä
rr n
→→
=+
0
λ
 Ë
U
 Ò°}ºä©®
¯ÈÒ°mË}º¯ º}Ò
K
 º ˰º}Ò
¹Ë¯Ë°ËËÓÒ« ¹¯«äº® Ò ¹ãº°}º°Ò È
λ

°ººmË°mËË ªº® º}Ë ÏÓÈËÓÒË
¹È¯ÈäË¯È
τ
cÒ°
º°}ºã}
K
¹¯ÒÓÈãËÎÒ ÈÓÓº® ¹ãº°}º°Ò
ºÒäËËä˰º°ººÓºËÓÒË
(, )nr a d
→→
+=
00
λ
|}È
λ
=
→→
→→
dnr
na
(, )
(,)
0
Òº}ºÓÈËãÓº
rr
dnr
na
a
→→
→→
→→
=+
0
0
(, )
(,)

 Ë }  Ò Ò    } È Á Ë  ¯ ©   m © °  Ë ®   ä È ˆ Ë ä È ˆ Ò } Ò   l n ‘ j 
ÙkÓÈã҈Ò˰}È«˺äˈ¯Ò«ÒãÒÓË®ÓÈ«ÈãË­¯ÈµäÓºmkp



                                                                                                  →       →       →
             ‚°ˆ ‚¯ÈmÓËÓÒ˹¯«äº®m¹¯º°ˆ¯ÈÓ°ˆmËÒäËˈmÒ r = r0 + τ a ¹¯ÒË乯˹º
                    →         →
ãºÎÒ䈺 r0 Ò a ÓË}ºããÒÓËȯө‘ºÈm}È˰ˆmËÓº¯äÈã Ó©²mË}ˆº¯ºm¹ãº°}º°ˆË®
                                                                                                 →        → →             →      → →
}ºˆº¯©Ë ¹Ë¯Ë°Ë}È ˆ°« ¹º ÈÓÓº® ¹¯«äº® äºÎÓº mÏ«ˆ  n1 = [ a , r0 ]  Ò n2 = [ a , n1 ]  jÏ
mˆº¯ºº¯ÈmËÓ°ˆmÈÒ°¹ºã ς«¹¹ºã‚ÈËä
       
                      →       → →          →    → →            → →       →       → →    →        → →      →       → 2 →
                     n2 = [ a , n1 ] = [ a ,[ a , r0 ]] = ( a , r0 ) a − ( a , a ) r0 = ( a , r0 ) a − a              r0 
             
                                                                                    → →                       → →
{}È˰ˆmË d 1 Ò d 2 ºËmÒÓºäºÎÓº¹¯ÒÓ«ˆ  d 1 = (n1 , r0 ) Ò d 2 = ( n 2 , r0 ) 
       
                                                                     →       →
       vã‚È®}ºããÒÓËȯө²mË}ˆº¯ºm r0 Ò a ¯È°°äºˆ¯ÒˆË°È亰ˆº«ˆËã Óº
       
       
       
       {ÏÈ}ã ËÓÒ˯Ȱ°äºˆ¯Òäm}È˰ˆm˹¯Òä˯ºm¯Ë ËÓÒËÓË}ºˆº¯©²°ˆË¯Ëºäˈ
¯Ò˰}Ò²ÏÈÈäˈºÈäÒmË}ˆº¯Óº®ÈãË­¯©
       
       
                                                      → →                                                            →    →       →
 ~ÈÈÈ                  bjt€ wsvxrvxz ( n , r ) = d 0  q wnénxnrjíj¹ nn wé¹uj¹ r = r0 + τ a  Ëjp
                   zqéjlqyxknrzvézv·rqwnénxn·ntq¹ëzvpwé¹uvpqwsvxrvxzq
                                                                                                          → →
 cËËÓÒË                                                       ° ~ÈäˈÒ䈺˰ãÒ ( n , a ) = 0 ˆºãÒ­º¯Ë
                                                                        ËÓÒ® Óˈ ãÒ­º m°« ¹¯«äÈ« ãËÎ҈ ÓÈ
                                                                      ÈÓÓº® ¹ãº°}º°ˆÒ ºªˆºä‚ ­‚Ëä ÈãËË
                                                                                                → →
                                                                        ¹ºãÈȈ ˆº ( n , a ) ≠ 0 
                                  →
                                                                 
  a                                                        →     →        →               →
 K                                            ° jäËËä r = r0 + λ n  Ë U   Ò°}ºä©®
                                           →
  n                                  ¯È҂°mË}ˆº¯ ˆº}Ò K ˆº ˰ˆ  ˆº}Ò
                                                                        ¹Ë¯Ë°ËËÓÒ« ¹¯«äº® Ò ¹ãº°}º°ˆÒ È λ 
             →                                                           °ººˆmˈ°ˆm‚ ËË ªˆº® ˆº}Ë ÏÓÈËÓÒË
  r0 
                    →
                                                                         ¹È¯Èäˈ¯Èτ cÒ° 
  r                                             
                                                                
         O                                                           º°}ºã }‚ K ¹¯ÒÓÈãËÎ҈ ÈÓÓº® ¹ãº°}º°ˆÒ
                                                                     ˆºÒäËˈä˰ˆº°ººˆÓº ËÓÒË
                                                                       
 èqxytvr
           
                                                                  → →                                                     → →
            → →           →                               d − ( n , r0 )                             d − ( n , r0 ) →
                                                                                                       →      →
          ( n , r0 + λ a ) = d 0 |ˆ}‚È λ =                → →
                                                                           Òº}ºÓȈËã Óº r = r0 +    → →         a 
                                                              (n, a)                                   (n, a)