Аналитическая геометрия и линейная алгебра. Умнов А.Е. - 78 стр.

UptoLike

Составители: 

Рубрика: 


Ë} ÒÒ}ÈÁË ¯©m©° Ë®äÈËäÈÒ}Òlnj
ÙkÓÈãÒÒ˰}È«˺äË¯Ò«ÒãÒÓË®ÓÈ«ÈãË¯Èµ
äÓºmkp

a
1

r
01

ρ

O

r
02
èqxytvr
°
 °mË}º¯©
a
1
Ò
a
2
ÓË}ºããÒÓËȯө
ºÈ ¹º°¯ºÒä ¹È¯ ¹ãº°}º°Ë® ¹È
¯ÈããËãÓ©²ªÒämË}º¯ÈäºÓÈÒÏ}º
º¯©² °ºË¯ÎÒ º}
r
01
 È ¯È«
º}
r
02
cÒ°
|Ëä ¹È¯ÈããËã˹ҹËÈ ¹º°¯ºËÓÓºº
ÓÈ mË}º¯È²
a
1

a
2
Ò
r
02
r
01
 ¯ÈmËÓ
¹¯ºÒÏmËËÓÒ¹ãºÈÒ¹È¯ÈããË㺯Èä
äÈ ÓȲº«˺°« m º°ÓºmÈÓÒÒ ÓÈ Ò°
}ºämËãÒÒÓ
ρ




a
1



r
01

r
02

a
2
O
|}ÈÓȲºÒäº
ρ
=
→→
→→
|( , , )|
|[ , ]|
rraa
aa
02 01 1 2
12

èqxytvr
ÈÈ

bjt wsvxrvxz
δ
=
),(
rn
qwé¹uj¹
[,]
pr q
→→
=
 Ëjpzq
R
éjlqyx
knrzvézv·rqq}wnénxn·ntq¹
ËÓÒË
äÓºÎÒm ºË ȰÒ ¯ÈmÓËÓÒ« ¹¯«äº® mË}º¯Óº °ãËmÈ ÓÈ
Q
 ¹ºãÒä
[ ,[ , ]] [ , ]
npr nq
→→
=
 º°ÈmÒmmªº°ººÓºËÓÒË Ò°}ºä©® mË}º¯
R
Ò
¹¯ÒäËÓÒmÁº¯äã¹¹¯Ò²ºÒä}¯ÈmËÓ°m
pnR Rnp nq
→→ →→ →→
−=
(,) (,) [,]

º°}ºã}
R
¹¯ÒÓÈãËÎÒ ÈÓÓº® ¹ãº°}º°Ò º
δ
=
),(
Rn
 Ò ºÈ
¹¯Ò˰˰mËÓÓºäº¯ÈÓÒËÓÒÒ
(,)
np
→→
0
¹ºãÈËä
),(
],[
=
pn
qnp
R
δ

 Ë }  Ò Ò    } È Á Ë  ¯ ©   m © °  Ë ®   ä È ˆ Ë ä È ˆ Ò } Ò   l n ‘ j 
ÙkÓÈã҈Ò˰}È«˺äˈ¯Ò«ÒãÒÓË®ÓÈ«ÈãË­¯ÈµäÓºmkp



                                                                                                  →         →
                                 →                         ° ‚°ˆ mË}ˆº¯© a1 Ò a 2 ÓË}ºããÒÓËȯө
   a1                               ˆºÈ ¹º°ˆ¯ºÒä ¹È¯‚ ¹ãº°}º°ˆË® ¹È
                  →                                              ¯ÈããËã Ó©²ªˆÒämË}ˆº¯ÈäºÓÈÒÏ}º
   r01                                                                                                  →
                                                                ˆº¯©² °º˯Î҈ ˆº}‚ r01  È ¯‚È«
  ρ                                                                         →
                                                                 ˆº}‚ r02  cÒ° 
  
                                                          
                          →                                      |­žËä ¹È¯ÈããËã˹ҹËÈ ¹º°ˆ¯ºËÓÓºº
  O r02                                                                   →         →            →        →
                                                                 ÓÈ mË}ˆº¯È² a1  a 2  Ò r02  r01  ¯ÈmËÓ
  
                                                                ¹¯ºÒÏmËËÓÒ ¹ãºÈҹȯÈããË㺯Èä
  èqxytvr                                 äÈ ÓȲº«Ëº°« m º°ÓºmÈÓÒÒ ÓÈ Ò°
                                                                }ºä‚ mËãÒÒӂρ
                                                                
                            →                                    |ˆ}‚ÈÓȲºÒ䈺
   a1                                  
                                                                                                 →       → → →
                                                                                            | (r02 − r01 , a1 , a 2 ) |
                   →                                                                 ρ=                  → →
                                                                                                                              
   r01                                                                               | [ a1 , a 2 ] |
                                                                                                         
                                                                                                         
                                                                                                         
                                                                                                         
                        →        →
   r02  a 2                                                                      
                                                           èqxytvr
  O
            
              
                                                       → →                                  → →       →                   →
    ~ÈÈÈ              bjt€ wsvxrvxz ( n , r ) = δ  q wé¹uj¹ [ p, r ] = q  Ëjpzq R   éjlqyx
    
                         knrzvézv·rqq}wnénxn·ntq¹

                                                                                                                             →
    cËËÓÒË           äÓºÎÒm º­Ë ȰˆÒ ‚¯ÈmÓËÓÒ« ¹¯«äº® mË}ˆº¯Óº °ãËmÈ ÓÈ Q  ¹ºã‚Òä
                            →   → →          → →                                                                                         →
                          [ n ,[ p, r ]] = [ n , q ]  º°ˆÈmÒm m ªˆº °ººˆÓº ËÓÒË Ò°}ºä©® mË}ˆº¯ R  Ò
                         ¹¯ÒäËÓÒmÁº¯ä‚ス¹¯Ò²ºÒä}¯ÈmËÓ°ˆm‚
                                                                → → →           → → →            → →
                                                                 p ( n , R) − R ( n , p ) = [ n , q ] 
                                             →                                                                   → →
                         º°}ºã }‚ R  ¹¯ÒÓÈãËÎ҈ ÈÓÓº® ¹ãº°}º°ˆÒ ˆº ( n , R ) = δ  Ò ˆºÈ
                                                                                                                         →       → →
                                                                               → →                              →     δ p−[ n, q ]
                         ¹¯Ò˰ˆË°ˆmËÓӺ亯ÈÓÒËÓÒÒ ( n , p ) ≠ 0 ¹ºã‚ÈËä R =                                                    
                                                                                                                           → →
                                                                                                                          ( n , p)