Аналитическая геометрия и линейная алгебра. Умнов А.Е. - 79 стр.

UptoLike

Составители: 

Рубрика: 

cÈÏËã


sËãÒÓˮөËºË}©ÓÈ¹ãº°}º°ÒÒm¹¯º°¯ÈÓ°mË
cÈÏËã
spjspqshp|rgpzh
sk|vz|vjj{c|vcksv{p
ÒÓÒÒÓÈ¹ãº°}º°ÒÒm¹¯º°¯ÈÓ°mË
° ÈÓÈ °Ò°ËäÈ }ºº¯ÒÓÈ
},,{
21
ggO
ÓÈ ¹ãº°}º°Ò Ò Ò°ãºmºË äÓºÎ˰mº
«mã«Ë˰«º¯ËÏ}ºäÒãÒÒÓ˯mÈãºämºÏäºÎÓº˰}ºÓËÓ©äÒãÒ¹ºã˰}ºÓË
Ó©ä
|¹¯ËËãËÓÒË

rËäºmº¯ÒºãÒÓÒ«
L
ÓÈ¹ãº°}º°ÒÏÈÈÓÈwjéjunzéq·nxrqmË}
º¯ÁÓ}ÒË®
rF
→→
=
()
τ
ÒãÒm}ºº¯ÒÓÈÓº®Áº¯äË
x
y
F
F
x
y
=
()
()
τ
τ
Ë
FF
xy
(), ()
ττ
Ó˹¯Ë¯©mÓ©Ë°}È㫯өËÁÓ}ÒÒȯäËÓÈ
τ
º¹¯Ë
ËãËÓÓ©Ëã«
τ
∈Ω
˰ãÒ
°iã«ãºº
τ
∈Ω
º}È
rF
→→
= ()
τ
ãËÎÒÓÈ
L

°iã«ãº®º}Ò
r
0
ãËÎÈË®ÓÈ
L
°˰mË
τ
0
∈Ω
È}ºË
ºm©¹ºãÓËÓº¯ÈmËÓ°mº
rF
00
→→
=
()
τ

jÓºÈãÒÓÒ«ÓÈ¹ãº°}º°ÒÏÈÈË°«mË¯ÈmÓËÓÒ«
Gxy
(,)
=
0
}ºº¯ºË¹º
ãÈË°«Ò°}ãËÓÒËä¹È¯ÈäË¯È
τ
ÒÏ°Ò°Ëä©¯ÈmÓËÓÒ®
xF
yF
x
y
=
=
()
()
,
τ
τ
τ

¯Òä˯

°¯«äÈ«ãÒÓÒ«ÏÈÈË°«mË}º¯ÁÓ}ÒË®
rr a
→→
=+
0
τ
Ë
a
ÓÈ
¹¯Èmã«Ò® mË}º¯ È
r
0
ºÓÈ ÒÏ ºË} ÈÓÓº® ¹¯«äº® v}È
㫯ÓÈ«Áº¯äÈÏÈÈÓÒ«¹¯«äº®mªºä°ãÈËÒäËËmÒ
xx a
yy a
x
y
=+
=+
∈−∞+
0
0
τ
τ
τ
,(,)
º˰
Fxa
Fya
xx
yy
()
()
,(,)
ττ
ττ
τ
=+
=+
∈−+
0
0

cÈÏËã 
sËãÒÓˮө˺­žË}ˆ©Óȹ㺰}º°ˆÒÒm¹¯º°ˆ¯ÈÓ°ˆmË



             
             
             
             

             
             
cÈÏËã
spjspqshp|rgpz‘h
sk|vz|v‘jj{c|v‘cksv‘{p
             
             
             
             
ÒÓÒÒÓȹ㺰}º°ˆÒÒm¹¯º°ˆ¯ÈÓ°ˆmË
             
             
             
                                                                             → →
         ‚°ˆ  ÈÓÈ °Ò°ˆËäÈ }ºº¯ÒÓȈ {O , g1 , g 2 }  ÓÈ ¹ãº°}º°ˆÒ Ò Ò°ãºmºË äÓºÎ˰ˆmº
Ω «mã« Ë˰«ºˆ¯ËÏ}ºäÒãÒÒӈ˯mÈãºä mºÏäºÎÓº­Ë°}ºÓËÓ©äÒãÒ¹ºã‚­Ë°}ºÓË
Ó©ä
         
 |¹¯ËËãËÓÒË    r‚Ëäºmº¯Òˆ ˆºãÒÓÒ«LÓȹ㺰}º°ˆÒÏÈÈÓÈwjéjunzéq·nxrqmË}
                                                                               Fx (τ )
                                 →   →                                           x
                 ˆº¯Á‚Ó}ÒË® r = F (τ )  ÒãÒm}ºº¯ÒÓȈӺ®Áº¯äË              =          Ë
                                                                                                                              y         Fy (τ )
                           Fx (τ ) , Fy (τ ) Ó˹¯Ë¯©mө˰}È㫯өËÁ‚Ó}ÒÒȯ‚äËӈÈ τ º¹¯Ë
                           ËãËÓÓ©Ëã« τ ∈ Ω ˰ãÒ
                                                                                        →      →
                                       °iã«ã ­ºº τ ∈Ω ˆº}È r = F (τ ) ãËÎ҈ÓÈL
                                                                              →
                                       °iã«ã ­º®ˆº}Ò r0 ãËÎȝˮÓÈ L°‚Ë°ˆm‚ˈ τ 0 ∈Ω ˆÈ}ºË
                                                                                          →        →
                                           ˆºm©¹ºãÓËÓº¯ÈmËÓ°ˆmº r0 = F (τ 0 ) 
             
             
             jÓºÈãÒÓÒ«Óȹ㺰}º°ˆÒÏÈÈˈ°«mmÒË‚¯ÈmÓËÓÒ« G ( x , y ) = 0 }ºˆº¯ºË¹º
                                                                                                         x = Fx (τ )
ã‚Èˈ°«Ò°}ã ËÓÒËä¹È¯Èäˈ¯ÈτÒϰҰˆËä©‚¯ÈmÓËÓÒ®                                                                , τ ∈Ω 
                                                                                                         y = Fy (τ )
             
                                                                                                             →      →       →            →
    ¯Òä˯                °¯«äÈ«ãÒÓÒ«ÏÈÈˈ°«mË}ˆº¯Á‚Ó}ÒË® r = r0 + τ a Ë a ÓÈ
                                                                      →
                                    ¹¯Èmã« Ò® mË}ˆº¯ È r0   ºÓÈ ÒÏ ˆºË} ÈÓÓº® ¹¯«äº® v}È
                                    㫯ÓÈ«Áº¯äÈÏÈÈÓÒ«¹¯«äº®mªˆºä°ã‚ÈËÒäËˈmÒ
                                     
                                     x = x0 + τ a x                             Fx (τ ) = x 0 + τ a x
                                                    , τ ∈( −∞, + ∞) ˆº˰ˆ                         , τ ∈( −∞,+∞) 
                                     y = y0 + τ a y                             Fy (τ ) = y 0 + τ a y