Аналитическая геометрия и линейная алгебра. Умнов А.Е. - 81 стр.

UptoLike

Составители: 

Рубрика: 

cÈÏËã


sËãÒÓˮөËºË}©ÓÈ¹ãº°}º°ÒÒm¹¯º°¯ÈÓ°mË
iº}ÈÏÈËã°mº
° ãÒÓÒ«
L
ÒäËËm°Ò°ËäË}ºº¯ÒÓÈ
{, , }
Og g
12
→→
¯ÈmÓËÓÒË
Gxy
(,)
=
0
Ò
¹º¯«º}
N
˯ˮËä}°Ò°ËäË}ºº¯ÒÓÈ
{, , }
Og g
′′
→→
12
nº¯äã©¹Ë¯Ë²ºÈ°º
ãȰӺ°ººÓºËÓÒ«äÒäËmÒ
xx y
yx y
=
+
+
=
+
+
σσ β
σσ β
11 12 1
21 22 2

¹ºªºä¯ÈmÓËÓÒËãÒÓÒÒ
L
mÙÓºmº®µ°Ò°ËäË}ºº¯ÒÓÈË
Gx y x y
(, )
σσ βσσ β
11 12 1 21 22 2
0
+
+
+
+=

|°È°ãËËm°Òã º¹¯ËËãËÓÒ« º
NN
º˰¹¯Ò ¹Ë¯Ë²ºË}
ÙÓºmº®µ °Ò°ËäË }ºº¯ÒÓÈ ¹º¯«º} ÈãË¯ÈÒ˰}º® }¯Òmº® ÓË äºÎË
¹ºm©°Ò°« ¯ÒäËÓ«« ÈÓÈãºÒÓ©Ë ¯È°°ÎËÓÒ« ã« º¯ÈÓºº ¹Ë¯Ë²ºÈ º
{, , }Og g
′′
→→
12
}
{, , }Og g
12
→→
¹ºãÒä
NN
Òº}ºÓÈËãÓº
NN=

˺¯ËäÈº}ÈÏÈÓÈ

~ÈäËÈÓÒË
 ÁÒ¯©ÓÈ¹ãº°}º°ÒäºÎÓºÏÈÈmÈÒ°¹ºãÏ«º¯ÈÓÒËÓÒ«Ò¹ÈÓ˯È
mËÓ°m
¯Òä˯

°{ º¯ºÓº¯äÒ¯ºmÈÓÓº® °Ò°ËäË }ºº¯ÒÓÈ ÓÈº¯ °ãºmÒ®
x
y
xy
+−
0
0
30
ÏÈÈË¹¯«äººãÓ©®¯ÈmÓº˯ËÓÓ©®¯Ëºã
ÓÒ}}ÈË©}ºº¯ººãËÎÈÓÈº°«²}ºº¯ÒÓÈÒÒäËãÒÓ©
° s˯ÈmËÓ°mºÈ
xy
22
40
+−
º¹¯ËËã«Ë}¯¯ÈÒ°È°ËÓ
¯ºämÓÈÈãË}ºº¯ÒÓÈ
cȰ°äº¯Òä˹˯°ãÈ®ãÒÓÒÒm¹¯º°¯ÈÓ°mË°ÈÓÈ¹¯º°¯ÈÓ°mËÓÓÈ«
°Ò°ËäÈ}ºº¯ÒÓÈ
{, , , }Og g g
123
→→

|¹¯ËËãËÓÒË

rËä ºmº¯Ò º ãÒÓÒ«
L
m ¹¯º°¯ÈÓ°mË ÏÈÈÓÈ wjéjunzéq·nxrq
mË}º¯ÁÓ}ÒË®
rF
→→
=
()
τ
ÒãÒm}ºº¯ÒÓÈÓº®Áº¯äË
x
y
z
F
F
F
x
y
z
=
()
()
()
τ
τ
τ

Ë
FFF
xyz
(), (), ()
τττ
 Ó˹¯Ë¯©mÓ©Ë °}È㫯өË ÁÓ}ÒÒ º
τ

cÈÏËã 
sËãÒÓˮө˺­žË}ˆ©Óȹ㺰}º°ˆÒÒm¹¯º°ˆ¯ÈÓ°ˆmË



     iº}ÈÏȈËã°ˆmº
                                                                                                   →    →
           ‚°ˆ  ãÒÓÒ« L ÒäËˈ m °Ò°ˆËäË }ºº¯ÒÓȈ {O, g1 , g 2 }  ‚¯ÈmÓËÓÒË G ( x , y ) = 0  Ò
                                                                                                  →    →
           ¹º¯«º} N Ë¯Ë®Ëä}°Ò°ˆËäË}ºº¯ÒÓȈ {O, g1′ , g 2′ } nº¯ä‚㩹˯˲ºÈ°º
           ãȰӺ°ººˆÓº ËÓÒ«äÒäË ˆmÒ
           
                                                                 x = σ11 x ′ + σ12 y ′ + β1
                                                                                              
                                                                 y = σ 21 x ′ + σ 22 y ′ + β2
                                                                
           ¹ºªˆºä‚‚¯ÈmÓËÓÒËãÒÓÒÒL mÙÓºmº®µ°Ò°ˆËäË}ºº¯ÒÓȈ­‚ˈ
           
                                 G (σ 11 x ′ + σ 12 y ′ + β1 , σ 21 x ′ + σ 22 y ′ + β2 ) = 0 
           
           |ˆ° È °ãË‚ˈ m °Òã‚ º¹¯ËËãËÓÒ«  ˆº N ≥ N ′  ˆº ˰ˆ  ¹¯Ò ¹Ë¯Ë²ºË }
           ÙÓºmº®µ °Ò°ˆËäË }ºº¯ÒÓȈ ¹º¯«º} ÈãË­¯ÈÒ˰}º® }¯Òmº® ÓË äºÎˈ
           ¹ºm©°Òˆ °« ¯ÒäËÓ«« ÈÓÈãºÒÓ©Ë ¯È°°‚ÎËÓÒ« ã« º­¯ÈˆÓºº ¹Ë¯Ë²ºÈ ºˆ
                  →    →                 →    →
           {O, g1′ , g 2′ } } {O, g1 , g 2 } ¹ºã‚Òä N ≤ N ′ Òº}ºÓȈËã Óº N = N ′ 
      
      ‘˺¯ËäȺ}ÈÏÈÓÈ
             
             
             
~ÈäËÈÓÒË ÁÒ‚¯©Óȹ㺰}º°ˆÒäºÎÓºÏÈÈmȈ Ò°¹ºã ς«º¯ÈÓÒËÓÒ«ˆÒ¹ÈÓ˯È
                       mËÓ°ˆm
             
             
    ¯Òä˯                °{        º¯ˆºÓº¯äÒ¯ºmÈÓÓº®                       °Ò°ˆËäË            }ºº¯ÒÓȈ            ÓÈ­º¯          ‚°ãºmÒ®
    
                                          x≥0
                                    
                                          y≥0                    ÏÈÈˈ¹¯«äº‚ºã Ó©®¯ÈmÓº­Ë¯ËÓÓ©®ˆ¯Ë‚ºã 
                                    x + y − 3 ≤ 0
                                    
                                 ÓÒ}}Ȉˈ©}ºˆº¯ººãËÎȈÓȺ°«²}ºº¯ÒÓȈÒÒäË ˆãÒÓ©
                           
                           ° s˯ÈmËÓ°ˆmºmÒÈ x 2 + y 2 − 4 ≤ 0 º¹¯ËËã«Ëˆ}¯‚¯È҂°È°ËÓ
                                 ˆ¯ºämÓÈÈãË}ºº¯ÒÓȈ
             
             
             cȰ°äºˆ¯ÒäˆË¹Ë¯ °ã‚È®ãÒÓÒÒm¹¯º°ˆ¯ÈÓ°ˆmˁ‚°ˆ ÈÓȹ¯º°ˆ¯ÈÓ°ˆmËÓÓÈ«
                                         →    →     →
°Ò°ˆËäÈ}ºº¯ÒÓȈ {O, g1 , g 2 , g 3 } 
         
         
 |¹¯ËËãËÓÒË r‚Ëä ºmº¯Òˆ  ˆº ãÒÓÒ« L m ¹¯º°ˆ¯ÈÓ°ˆmË ÏÈÈÓÈ wjéjunzéq·nxrq
 
                                                                                             x    Fx (τ )
                                                              →      →
                           mË}ˆº¯Á‚Ó}ÒË® r = F (τ )  ÒãÒm}ºº¯ÒÓȈӺ®Áº¯äË y = Fy (τ ) 
                                                                                             z    Fz (τ )
                           Ë Fx (τ ) , Fy (τ ) , Fz (τ )   Ó˹¯Ë¯©mÓ©Ë °}È㫯өË Á‚Ó}ÒÒ ºˆ τ