Аналитическая геометрия и линейная алгебра. Умнов А.Е. - 83 стр.

UptoLike

Составители: 

Рубрика: 

cÈÏËã


sËãÒÓˮөËºË}©ÓÈ¹ãº°}º°ÒÒm¹¯º°¯ÈÓ°mË
°iã« ãº® ¹º¯«ºËÓÓº® ¹È¯© Ò°Ëã
ϕθ
,
∈Ω
º}È
rF
→→
=
(,)
ϕθ
ãËÎÒÓÈ
S .
°iã«ãº®º}Ò
r
0
ãËÎÈË®ÓÈ
S
°˰mË¹º¯«ºËÓ
ÓÈ« ¹È¯È Ò°Ëã
ϕθ
00
,
∈Ω
È}Ò² º m©¹ºãÓËÓº ¯ÈmËÓ°mº
rF
000
→→
=
(,)
ϕθ

jÓºÈ ¹ºm˯²Óº° m ¹¯º°¯ÈÓ°mË ÏÈÈË°« m Ë ¯ÈmÓËÓÒ«
Gxyz(,,)
=
0

}ºº¯ºË¹ºãÈË°«Ò°}ãËÓÒËä
ϕ
Ò
θ
ÒÏ°Ò°Ëä©¯ÈmÓËÓÒ®
xF
yF
zF
x
y
z
=
=
=
(,)
(,)
(,)
;,
ϕθ
ϕθ
ϕθ
ϕθ

¯Òä˯

{º¯ºÓº¯äÒ¯ºmÈÓÓº®°Ò°ËäË}ºº¯ÒÓÈx{néj¯ÈÒ°È
R
°ËÓ¯ºäm
º}Ë
x
y
z
0
0
0
äºÎË©¹È¯ÈäË¯Ò˰}ÒÏÈÈÓÈmmÒË
xx R
yy R
zz R
=+
=+
=+
≤<
≤≤
0
0
0
02
0
cos sin
sin sin
cos
;
ϕθ
ϕθ
θ
ϕπ
θπ

ÈËË¯ÈmÓËÓÒËm}ºº¯ÒÓÈȲ
()()()
xx yy zz R−++=
0
2
0
2
0
22

|¹¯ËËãËÓÒË

ºm˯²Óº°ÓÈÏ©mÈË°«jsmniéjq·nxrvp˰ãÒËË¯ÈmÓËÓÒËmË}ȯº
mº® °Ò°ËäË }ºº¯ÒÓÈ ÒäËË
α
k
k
m
xyz
pq
r
kkk
=
=
0
0
 Ë
p
k

q
k
Ò
r
k
Ëã©ËÓ˺¯ÒÈËãÓ©ËÒ°ãÈÈÒ°ãÈ
k
α
ÓË¯ÈmÓ©ÓãºÓºm¯ËäËÓ
Óº
|¹¯ËËãËÓÒË

Ò°ãº
Npqr
km
kkk
=++
=
max{ }
[, ]0
ÓÈÏ©mÈË°«wvé¹lrvujsmniéjq·nxrvmvyéjk
tntq¹}ÈÏÈÓÓººmº¹¯ËËãËÓÒÒËäÈ}°ÒääÒË°«¹ºm°Ëä
N
ã«}ºº¯©²
α
k
0
sÈÒäËÓÒ®ÒÏ¹º¯«}ºmÈãË¯ÈÒ˰}Ò²¯Èm
ÓËÓÒ® ÏÈÈÒ² ÈÓÓÈãË¯ÈÒ˰} ¹ºm˯²Óº°ÓÈÏ©mÈË°« wv
é¹lrvujsmniéjq·nxrvpwvkné}tvxzq
cÈÏËã 
sËãÒÓˮө˺­žË}ˆ©Óȹ㺰}º°ˆÒÒm¹¯º°ˆ¯ÈÓ°ˆmË



                                      °iã« ã ­º® ‚¹º¯«ºËÓÓº® ¹È¯© Ò°Ëã ϕ , θ ∈Ω  ˆº}È
                                            →       →
                                            r = F (ϕ , θ ) ãËÎ҈ÓÈS .
                                                                              →
                                      °iã«ã ­º®ˆº}Ò r0 ãËÎȝˮÓÈS°‚Ë°ˆm‚ˈ‚¹º¯«ºËÓ
                                          ÓÈ« ¹È¯È Ò°Ëã ϕ 0 , θ0 ∈Ω  ˆÈ}Ò² ˆº m©¹ºãÓËÓº ¯ÈmËÓ°ˆmº
                                            →        →
                                            r0 = F (ϕ 0 , θ0 ) 
             
             
             
             jÓºÈ ¹ºm˯²Óº°ˆ  m ¹¯º°ˆ¯ÈÓ°ˆmË ÏÈÈˈ°« m mÒË ‚¯ÈmÓËÓÒ« G ( x , y , z ) = 0 
                                                                x = Fx (ϕ , θ )
                                                               
}ºˆº¯ºË¹ºã‚Èˈ°«Ò°}ã ËÓÒËä ϕ Ò θ ÒϰҰˆËä©‚¯ÈmÓËÓÒ®  y = Fy (ϕ , θ ) ; ϕ , θ ∈ Ω 
                                                                z = F (ϕ , θ )
                                                                     z
             
             
    ¯Òä˯                {º¯ˆºÓº¯äÒ¯ºmÈÓÓº®°Ò°ˆËäË}ºº¯ÒÓȈx{néj¯È҂°È R°Ëӈ¯ºäm
    
                                  x0
                           ˆº}Ë y 0 äºÎˈ­©ˆ ¹È¯Èäˈ¯Ò˰}ÒÏÈÈÓÈmmÒË
                                  z0
                           
                                                              x = x0 + R cosϕ sin θ
                                                                                                      0 ≤ ϕ < 2π
                                                              y = y0 + R sin ϕ sin θ ;                           
                                                              z = z + R cosθ                          0≤θ ≤ π
                                                                   0
                           
                           ÈËË‚¯ÈmÓËÓÒËm}ºº¯ÒÓȈȲ ( x − x 0 ) 2 + ( y − y 0 ) 2 + ( z − z0 ) 2 = R 2 
             
             
             
    |¹¯ËËãËÓÒË           ºm˯²Óº°ˆ ÓÈÏ©mÈˈ°«jsmniéjq·nxrvp˰ãÒËË‚¯ÈmÓËÓÒËmË}ȯˆº
                                                                                      m
                           mº® °Ò°ˆËäË }ºº¯ÒÓȈ ÒäËˈ mÒ                             ∑αk x p      k   y qk z r k = 0  Ë pk  qk Ò rk
                                                                                            k =0
                           Ëã©ËÓ˺ˆ¯ÒȈËã Ó©ËÒ°ãÈÈÒ°ãÈ α k Ó˯ÈmÓ©ӂã ºÓºm¯ËäËÓ
                           Óº
             
             
    |¹¯ËËãËÓÒË               Ұ㺠N = max { pk + q k + rk } ÓÈÏ©mÈˈ°«wvé¹lrvujsmniéjq·nxrvmvyéjk
                                         k =[ 0,m ]

                           tntq¹ ‚}ÈÏÈÓÓººmº¹¯ËËãËÓÒÒ ËäÈ}°Òä‚äҝˈ°«¹ºm°Ëä
                           Nã«}ºˆº¯©² α k ≠ 0 sÈÒäËÓ Ò®ÒϹº¯«}ºmÈãË­¯ÈÒ˰}Ò²‚¯Èm
                           ÓËÓÒ® ÏÈÈ Ò² ÈÓӂ  ÈãË­¯ÈÒ˰}‚  ¹ºm˯²Óº°ˆ  ÓÈÏ©mÈˈ°« wv
                           é¹lrvujsmniéjq·nxrvpwvkné}tvxzq