Аналитическая геометрия и линейная алгебра. Умнов А.Е. - 85 стр.

UptoLike

Составители: 

Рубрика: 

cÈÏËã


sËãÒÓˮөËºË}©ÓÈ¹ãº°}º°ÒÒm¹¯º°¯ÈÓ°mË
rFa
→→
=+
(,) ()
ϕθ ϕ θ

ϕθ
−∞ +∞
,(,)

{}ºº¯ÒÓÈÓº®Áº¯äË¹º°ãËÒ°}ãËÓÒ«
θ
¹ºãÈËä
xF
a
yF
a
zF
a
x
x
y
y
z
z
=
=
()
()
()
ϕ
ϕ
ϕ

¯Òä˯

Íé¹uj¹réymvkj¹|qsqtléq·nxrj¹wvkné}tvxzã«}ºº¯º®mº¯ºÓº¯
äÒ¯ºmÈÓÓº®°Ò°ËäË}ºº¯ÒÓÈ
Óȹ¯Èmã«Ë®°ãÎÒº}¯ÎÓº°¯ÈÒ°ÈãËÎÈÈ«m¹ãº°}º
°Ò ¹Ë¯¹ËÓÒ}㫯Ӻ® º°Ò ȹ¹ãÒ}È ° ËÓ¯ºä m ÓÈÈãË }ºº¯
ÒÓÈ
Èº¯ÈÏÒäÒ«mã«°«¹¯«ä©Ë¹Ë¯¹ËÓÒ}㫯өËªº®¹ãº°
}º°Ò
ÏÈÈË°«°ÒFË亮°ãºmÒ®
x
y
z
=
=
=
3
3
cos
sin
ϕ
ϕ
θ
¹º°}ºã}
Fa
→→
==
()
cos
sin ; .
ϕ
ϕ
ϕ
3
3
0
0
0
1
~ÈäËÒäº˰ãÒÒÏ¹ºãËÓÓ©²°ººÓºËÓÒ®È}ÎËÒ°}ãÒÒ¹È¯ÈäË¯
ϕ

º ¹ºãÒ°« ¯ÈmÓËÓÒË È
xy
22
9
+=
ã« ãºº
z
 º}È °ãËË º ¹º¯«º}
ÈÓÓº®ÈãË¯ÈÒ˰}º®¹ºm˯²Óº°Ò
2
=N


M

r

N
O

F
()
ϕ


a
èqxytvr

M
 r

N


O F
()
ϕ

r
0
èqxytvr
cÈÏËã 
sËãÒÓˮө˺­žË}ˆ©Óȹ㺰}º°ˆÒÒm¹¯º°ˆ¯ÈÓ°ˆmË



                                             →               →             →
                                             r (ϕ , θ ) = F (ϕ ) + θ a  ϕ ∈ Ω , θ ∈ ( −∞,+∞) 
       
{}ºº¯ÒÓȈӺ®Áº¯ä˹º°ãËÒ°}ã ËÓÒ«θ¹ºã‚ÈËä
       
                                                  x − Fx (ϕ ) y − Fy (ϕ ) z − Fz (ϕ )
                                                             =           =            
                                                      ax          ay          az
             
             

    ¯Òä˯                Íé¹uj¹réymvkj¹|qsqtléq·nxrj¹wvkné}tvxzã«}ºˆº¯º®mº¯ˆºÓº¯
                    äÒ¯ºmÈÓÓº®°Ò°ˆËäË}ºº¯ÒÓȈ
                           

                                Óȹ¯Èmã« Ë®°ã‚Î҈º}¯‚ÎÓº°ˆ ¯È҂°ÈãËÎȝȫm¹ãº°}º
                                  °ˆÒ ¹Ë¯¹ËÓÒ}‚㫯Ӻ® º°Ò ȹ¹ãÒ}Ȉ ° Ëӈ¯ºä m ÓÈÈãË }ºº¯
                                  ÒÓȈ
                                

                                Ⱥ­¯Èς ÒäÒ«mã« ˆ°«¹¯«ä©Ë¹Ë¯¹ËÓÒ}‚㫯ө˪ˆº®¹ãº°
                                  }º°ˆÒ
                                

                           ÏÈÈˈ°«°ÒFˆË亮‚°ãºmÒ®
             
                                 x = 3 cos ϕ                       3 cos ϕ                                  0
                                                          →                                              →
                                 y = 3 sin ϕ ¹º°}ºã }‚ F (ϕ ) = 3 sin ϕ ;                             a= 0             .
                                 z =θ
                                                                      0                                     1
           
           
           ~ÈäˈÒ䈺˰ãÒÒϹºã‚ËÓÓ©²°ººˆÓº ËÓÒ®ˆÈ}ÎËÒ°}ã ҈ ҹȯÈäˈ¯ϕ
ˆº ¹ºã‚҈°« ‚¯ÈmÓËÓÒË mÒÈ x 2 + y 2 = 9  ã« ã ­ºº z  ºˆ}‚È °ãË‚ˈ ˆº ¹º¯«º}
ÈÓÓº®ÈãË­¯ÈÒ˰}º®¹ºm˯²Óº°ˆÒ N = 2 
           
           
                                                 
                                                 
                                                  M
  M                  
               →                                  
  r                                                    →
                                                  r N
                                                 
 N                      
                                                                    →
                                                  O F (ϕ ) 
            →
    O F (ϕ )                                                        
                                                                                                 →
                                                                                 r0 
                     →
     a                                                           
                                                                                
                                                                                
                                                                                
                                                                                
    èqxytvr                                    èqxytvr