Аналитическая геометрия и линейная алгебра. Умнов А.Е. - 84 стр.

UptoLike

Составители: 

Рубрика: 


Ë} ÒÒ}ÈÁË ¯©m©° Ë®äÈËäÈÒ}Òlnj
ÙkÓÈãÒÒ˰}È«˺äË¯Ò«ÒãÒÓË®ÓÈ«ÈãË¯Èµ

äÓºmkp
¯Òä˯

ÈãË¯ÈÒ˰}ÒË
¹ºm˯²Óº°Ò
㺰}º°
23 0
xyz++= (N=1)
¯«äº®}¯ºmº®ÒãÒÓ¯
xy
22
10
+−= (N=2)
vÁ˯È
xyzR
2222
0
++= (N=2)
˺¯ËäÈ

º¯«
º}Èã
Ë¯ÈÒ
˰}º®¹ºm˯²Óº°ÒÓË ÏÈmÒ°Òºm©º¯È °Ò°Ë
ä©}ºº¯ÒÓÈ
iº}ÈÏÈËã°mº
kÓÈãºÒÓºº}ÈÏÈËã°m˺¯Ëä©
~ÈäËÈÓÒË
 ËãÈ m ¹¯º°¯ÈÓ°mË äºÎÓº ÏÈÈmÈ Ò°¹ºãÏ« º¯ÈÓÒËÓÒ« Ò¹È Ó˯È
mËÓ°m
¡ÒãÒÓ
¯Ò
˰}ÒËÒ}ºÓÒ
˰}ÒË¹ºm˯²Óº°Ò
°m¹¯º°¯ÈÓ°mËÏÈÈÓ©°Ò°ËäÈ}ºº¯ÒÓÈ
{, , , }2 ggg
123
→→
ÒÓË}ºº¯È«ãÒ
ÓÒ«
rF
F
F
F
x
y
z
→→
==
()
()
()
()
,
ϕ
ϕ
ϕ
ϕ
ϕ
}ºº¯ËäÓÈÏ©mÈtjwéjks¹ínp
|¹¯ËËãËÓÒË

¯ºmËËä ˯ËÏ }ÈÎº} Óȹ¯Èmã«Ë® }¯Òmº® ¹¯«ä ÓÈÏ©
mÈËä viéjoyínp ¹È¯ÈããËãÓº ÓË}ºº¯ºä ÓËÓãËmºä mË}º¯
a
a
a
a
x
y
z
=

vºmº}¹Óº° m°Ë² ºË} ¹¯º°¯ÈÓ°mÈ ãËÎÈÒ² ÓÈ º¯ÈÏÒ²
ÈÓÓººmÒÈÓÈÏ©mÈË°«|qsqtléq·nxrvpwvkné}tvxzí
vº°ÈmÒä¯ÈmÓËÓÒËÒãÒÓ¯Ò˰}º®¹ºm˯²Óº°ÒmºËäË{ºmmËËÓÓ©²
ººÏÓÈËÓÒ«²
rF NM
→→
=+
()
ϕ
¯Ò°Óº¹ºº¹¯ËËãËÓÒÒãÒÓ¯Ò˰}º®¹ºm˯²
Óº°Ò
NM a
→→
=
θ
Ò°ã˺mÈËãÓº¯ÈmÓËÓÒËÒãÒÓ¯Ò˰}º®¹ºm˯²Óº°ÒmmË}º¯Óº®
Áº¯äËÒäËËmÒ
 Ë }  Ò Ò    } È Á Ë  ¯ ©   m © °  Ë ®   ä È ˆ Ë ä È ˆ Ò } Ò   l n ‘ j 
ÙkÓÈã҈Ò˰}È«˺äˈ¯Ò«ÒãÒÓË®ÓÈ«ÈãË­¯ÈµäÓºmkp



  ¯Òä˯               ãº°}º°ˆ  2x + 3y + z = 0                                                    (N=1)
 
  ÈãË­¯ÈÒ˰}ÒË             ¯«äº®}¯‚ºmº®ÒãÒÓ¯ x 2 + y 2 − 1 = 0                                                    (N=2)
 ¹ºm˯²Óº°ˆÒ 
                              vÁ˯È x + y + z − R = 0
                                                                                        2       2      2       2
                                                                                                                                      (N=2)
            
            
            
 ‘˺¯ËäÈ                    º¯«º} ÈãË­¯ÈÒ˰}º® ¹ºm˯²Óº°ˆÒ ÓË ÏÈmҰ҈ ºˆ m©­º¯È °Ò°ˆË
                      ä©}ºº¯ÒÓȈ
            
  iº}ÈÏȈËã°ˆmº
   
      kÓÈãºÒÓºº}ÈÏȈËã °ˆm‚ˆËº¯Ëä©
       
       
       
~ÈäËÈÓÒË ˆËãÈ m ¹¯º°ˆ¯ÈÓ°ˆmË äºÎÓº ÏÈÈmȈ  Ò°¹ºã ς« º¯ÈÓÒËÓÒ« ˆÒ¹È Ó˯È
             mËÓ°ˆm
       
       
       
       
¡ÒãÒÓ¯Ò˰}ÒËÒ}ºÓÒ˰}Ò˹ºm˯²Óº°ˆÒ
            
            
            
                                                                                                     →     →   →
            ‚°ˆ m¹¯º°ˆ¯ÈÓ°ˆmËÏÈÈÓ©°Ò°ˆËäÈ}ºº¯ÒÓȈ {2, g1 , g 2 , g 3 } ÒÓË}ºˆº¯È«ãÒ
                  Fx (ϕ )
       →     →
ÓÒ« r = F (ϕ ) = Fy (ϕ ) , ϕ ∈ Ω }ºˆº¯‚ ­‚ËäÓÈÏ©mȈ tjwéjks¹ínp
                  Fz (ϕ )
            
            
            
 |¹¯ËËãËÓÒË          ¯ºmËËä ˯ËÏ }È΂  ˆº}‚ Óȹ¯Èmã« Ë® }¯Òmº® ¹¯«ä‚  ÓÈÏ©
                 mÈËä‚  viéjoyínp ¹È¯ÈããËã Óº ÓË}ºˆº¯ºä‚ ÓËӂãËmºä‚ mË}ˆº¯‚
                             ax
                         →
                         a = a y 
                             az
                        vºmº}‚¹Óº°ˆ  m°Ë² ˆºË} ¹¯º°ˆ¯ÈÓ°ˆmÈ ãËÎȝҲ ÓÈ º­¯Èς Ò²
                        ÈÓÓººmÒÈÓÈÏ©mÈˈ°«|qsqtléq·nxrvpwvkné}tvxzí
            
            
            vº°ˆÈmÒ䂯ÈmÓËÓÒËÒãÒÓ¯Ò˰}º®¹ºm˯²Óº°ˆÒmº­ËämÒË{ºmmËËÓÓ©²
                        →     →            →
º­ºÏÓÈËÓÒ«² r = F (ϕ ) + NM  ¯Ò° Óº¹ºº¹¯ËËãËÓÒ ÒãÒÓ¯Ò˰}º®¹ºm˯²
             →          →
Óº°ˆÒ NM = θ a Ò°ã˺mȈËã Óº‚¯ÈmÓËÓÒËÒãÒÓ¯Ò˰}º®¹ºm˯²Óº°ˆÒmmË}ˆº¯Óº®
Áº¯äËÒäËˈmÒ