Аналитическая геометрия и линейная алгебра. Умнов А.Е. - 82 стр.

UptoLike

Составители: 

Рубрика: 


Ë} ÒÒ}ÈÁË ¯©m©° Ë®äÈËäÈÒ}Òlnj
ÙkÓÈãÒÒ˰}È«˺äË¯Ò«ÒãÒÓË®ÓÈ«ÈãË¯Èµ

äÓºmkp
º¹¯ËËãËÓÓ©Ëã«
τ
∈Ω
˰ãÒ
°
iã«ãºº
τ
∈Ω
º}È
rF
→→
= ()
τ
ãËÎÒÓÈ
L

°
 iã«ãº®º}Ò
r
0
ãËÎÈË®ÓÈ
L
°˰mË
0
τ
È
}ºËºm©¹ºãÓËÓº¯ÈmËÓ°mº
rF
00
→→
= ()
τ

jÓºÈãÒÓÒ«m¹¯º°¯ÈÓ°mËÏÈÈË°«°Ò°Ë亮¯ÈmÓËÓÒ®
Gxyz
Hxyz
(,,)
(,,)
=
=
0
0
}º
º¯È«¹ºãÈË°«Ò°}ãËÓÒËä¹È¯ÈäË¯È
τ
ÒÏ°ººÓºËÓÒ®
=
=
=
τ
τ
τ
τ
,
)(
)(
)(
z
y
x
Fz
Fy
Fx
ÒãÒÎË
¯ÈmÓº°ÒãÓ©ä¯ÈmÓËÓÒËäÓȹ¯Òä˯mÒÈ
0),,(),,(
22
=+ zyxHzyxG

¯Òä˯

°
 { Ë}ȯºmº® °Ò°ËäË }ºº¯ÒÓÈ ÈãË¯ÈÒ˰}È« ãÒÓÒ« mº¯ºº
¹º¯«}È
xy z
22
0+= ,
«mã«Ë°«¹¯«äº®
°
 { º¯ºÓº¯äÒ¯ºmÈÓÓº® °Ò°ËäË }ºº¯ÒÓÈmÒÓºmÈ« ãÒÓÒ« ¯ÈÒ°È
5 ° Ⱥä πD äºÎË ©ÏÈÈÓÈ m °ãËËä ¹È¯ÈäË¯Ò˰}ºä
Ë

xR
yR
za
=
=
=
∈−+
cos
sin , ( , )
τ
τ
τ
τ
ÒãÒÎË
xR
z
a
yR
z
a
=
=
cos
sin .
ºm˯²Óº°Òm¹¯º°¯ÈÓ°mË
° ÒäËË°« ¹¯º°¯ÈÓ°mËÓÓÈ« °Ò°ËäÈ }ºº¯ÒÓÈ
{, , , }
Og g g
123
→→
Ò

äÓºÎ˰mº¹º¯«ºËÓÓ©²¹È¯Ò°Ëã
ϕθ
,
ÏÈÈÓÓºË°ãºmÒ«äÒ
αϕβγθδ
≤≤
,

|¹¯ËËãËÓÒË

rËäºmº¯Òºm¹¯º°¯ÈÓ°mË¹ºm˯²Óº°
S
ÏÈÈÓÈwjéjunzéq·n
xrq mË}º¯ÁÓ}ÒË®
rF
→→
=
(,)
ϕθ
ÒãÒ m }ºº¯ÒÓÈÓº® Áº¯äË
x
y
z
F
F
F
x
y
z
=
(,)
(,)
(,)
ϕθ
ϕθ
ϕθ
 Ë
FFF
xyz
(,), (,), (,)
ϕθ ϕθ ϕθ
 Ó˹¯Ë¯©mÓ©Ë °}È
㫯өË ÁÓ}ÒÒ m² ȯäËÓºm
ϕθ
,
º¹¯ËËãËÓÓ©Ë ã«
ϕθ
,
∈Ω

˰ãÒ
 Ë }  Ò Ò    } È Á Ë  ¯ ©   m © °  Ë ®   ä È ˆ Ë ä È ˆ Ò } Ò   l n ‘ j 
ÙkÓÈã҈Ò˰}È«˺äˈ¯Ò«ÒãÒÓË®ÓÈ«ÈãË­¯ÈµäÓºmkp



                     º¹¯ËËãËÓÓ©Ëã« τ ∈ Ω ˰ãÒ
                                                                                    →     →
                                    °iã«ã ­ºº τ ∈Ω ˆº}È r = F (τ ) ãËÎ҈ÓÈL
                                                                          →
                                    ° iã«ã ­º®ˆº}Ò r0 ãËÎȝˮÓÈ L °‚Ë°ˆm‚ˈ τ 0 ∈ Ω ˆÈ
                                                                                              →     →
                                          }ºËˆºm©¹ºãÓËÓº¯ÈmËÓ°ˆmº r0 = F (τ 0 ) 
            
                                                                                                                  G ( x, y, z) = 0
            jÓºÈãÒÓÒ«m¹¯º°ˆ¯ÈÓ°ˆmËÏÈÈˈ°«°Ò°ˆË亮‚¯ÈmÓËÓÒ®                                                                }º
                                                                                                                   H ( x, y, z) = 0
                                                           x = Fx (τ )
                                                          
ˆº¯È«¹ºã‚Èˈ°«Ò°}ã ËÓÒËä¹È¯Èäˈ¯È τÒϰººˆÓº ËÓÒ®  y = F y (τ ) , τ ∈ Ω ÒãÒÎË
                                                           z = F (τ )
                                                                 z

¯ÈmÓº°Òã ө䂯ÈmÓËÓÒËäÓȹ¯Òä˯mÒÈ G 2 ( x, y, z ) + H 2 ( x, y, z ) = 0 
         
         
 ¯Òä˯     ° { Ë}ȯˆºmº® °Ò°ˆËäË }ºº¯ÒÓȈ ÈãË­¯ÈÒ˰}È« ãÒÓÒ« mˆº¯ºº
 
                   ¹º¯«}È x 2 + y 2 = 0 , ∀z «mã«Ëˆ°«¹¯«äº®
             
             ° { º¯ˆºÓº¯äÒ¯ºmÈÓÓº® °Ò°ˆËäË }ºº¯ÒÓȈ mÒӈºmÈ« ãÒÓÒ« ¯È҂°È
                   5 ° Ⱥä πD äºÎˈ ­©ˆ  ÏÈÈÓÈ m °ãË‚ Ëä ¹È¯Èäˈ¯Ò˰}ºä
                   mÒË
                                                 x = R cos τ                                                           z
                                                                                                            x = R cos a
                                    y = R sin τ , τ ∈ ( −∞,+∞) ÒãÒÎË                                      
                                                                                                                        z
                                                 z = aτ                                                     y = R sin    .
                                                                                                                      a
            
            
            
            
ºm˯²Óº°ˆÒm¹¯º°ˆ¯ÈÓ°ˆmË
            
            
            
                                                                                                                  →    →    →
      ‚°ˆ  ÒäËˈ°« ¹¯º°ˆ¯ÈÓ°ˆmËÓÓÈ« °Ò°ˆËäÈ }ºº¯ÒÓȈ {O, g1 , g 2 , g 3 }  Ò Ω  
äÓºÎ˰ˆmº‚¹º¯«ºËÓÓ©²¹È¯Ò°Ëã ϕ , θ ÏÈÈÓӺ˂°ãºmÒ«äÒ α ≤ ϕ ≤ β , γ ≤ θ ≤ δ 
            
            

 |¹¯ËËãËÓÒË            r‚Ëäºmº¯Òˆ ˆºm¹¯º°ˆ¯ÈÓ°ˆm˹ºm˯²Óº°ˆ  SÏÈÈÓÈwjéjunzéq·n
                                                              →     →
                         xrq mË}ˆº¯Á‚Ó}ÒË®                       r = F (ϕ , θ )        ÒãÒ m }ºº¯ÒÓȈӺ® Áº¯äË
                          x    Fx (ϕ , θ )
                          y = Fy (ϕ , θ )  Ë Fx (ϕ , θ ) , Fy (ϕ , θ ) , Fz (ϕ , θ )   Ó˹¯Ë¯©mÓ©Ë °}È
                          z    Fz (ϕ , θ )
                         㫯өË Á‚Ó}ÒÒ m‚² ȯ‚äËӈºm ϕ , θ   º¹¯ËËãËÓÓ©Ë ã« ϕ , θ ∈Ω 
                         ˰ãÒ