Аналитическая геометрия и линейная алгебра. Умнов А.Е. - 86 стр.

UptoLike

Составители: 

Рубрика: 


Ë} ÒÒ}ÈÁË ¯©m©° Ë®äÈËäÈÒ}Òlnj
ÙkÓÈãÒÒ˰}È«˺äË¯Ò«ÒãÒÓË®ÓÈ«ÈãË¯Èµ

äÓºmkp
|¹¯ËËãËÓÒË

¯ºmËËä˯ËÏ}ÈÎº}Óȹ¯Èmã«Ë®ãÒÓÒÒ¹¯«äÓÈÏ©mÈË
ä viéjoyínp ¹¯º²º« ˯ËÏ ÓË}ºº¯ ÁÒ}°Ò¯ºmÈÓÓ ÓË
¹¯ÒÓÈãËÎÈ Óȹ¯Èmã«Ë® º} ÓÈÏ©mÈËä kné¡qtvp
r
x
y
z
0
0
0
0
=

vºmº}¹Óº°m°Ë²ºË}¹¯º°¯ÈÓ°mÈãËÎÈÒ²ÓÈº¯ÈÏÒ²ÈÓ
ÓººmÒÈÓÈÏ©mÈË°«rvtq·nxrvpwvkné}tvxzí
vº°ÈmÒä¯ÈmÓËÓÒË}ºÓÒ˰}º®¹ºm˯²Óº°ÒmºËämÒË
kÓÈãºÒÓº¯È°°äº¯ËÓÓºäË°ãÈ
rF NM
→→
=+
()
ϕ
Óº¹ºº¹¯ËËãËÓÒ
}ºÓÒ˰}º® ¹ºm˯²Óº°Ò ÒÏ ¯Ò° 
NM r F
→→
=−
θϕ
(())
0
Ò°ã˺mÈËãÓº ¯ÈmÓËÓÒË
}ºÓÒ˰}º®¹ºm˯²Óº°ÒmmË}º¯Óº®Áº¯äËÒäËËmÒ
rFr
→→
=− +
−∞ +∞
(,) ( ) () ,
,(,).
ϕθ θ ϕ θ
ϕθ
1
0
{}ºº¯ÒÓÈÓº®Áº¯äË¹º°ãËÒ°}ãËÓÒ«
θ
¹ºãÈËä
xF
xF
yF
yF
zF
zF
x
x
y
y
z
z
=
=
()
()
()
()
()
()
ϕ
ϕ
ϕ
ϕ
ϕ
ϕ
000

¯Òä˯

Íé¹uj¹réymvkj¹rvtq·nxrj¹wvkné}tvxzã«}ºº¯º®mº¯ºÓº¯äÒ¯º
mÈÓÓº®°Ò°ËäË}ºº¯ÒÓÈ
Óȹ¯Èmã«Ë®°ãÎÒº}¯ÎÓº°¯ÈÒ°ÈãËÎÈÈ«m¹ãº°
}º°Ò¹Ë¯¹ËÓÒ}㫯Ӻ®º°Òȹ¹ãÒ}È°ËÓ¯ºämÓÈÈãË}º
º¯ÒÓÈ
Òº¯ÈÏÒäÒ¹¯º²º«ÒäÒ˯ËÏº}
1
0
0
0
=
r

ÏÈÈË°«°ÒFË亮°ãºmÒ®
xy z
=
=
3
3
3
31
02
cos
cos
sin
sin
,[,)
ϕ
ϕ
ϕ
ϕ
ϕπ

~ÈäËÒäº˰ãÒÒÏ¹ºãËÓÓ©²°ººÓºËÓÒ®Ò°}ãÒÈ}ÎËÒ¹È¯ÈäË¯
ϕ

º¹ºãÒ°«¯ÈmÓËÓÒËmÒÈ
0)1(
99
2
22
=++
z
yx
º˰
2
=
N
.
 Ë }  Ò Ò    } È Á Ë  ¯ ©   m © °  Ë ®   ä È ˆ Ë ä È ˆ Ò } Ò   l n ‘ j 
ÙkÓÈã҈Ò˰}È«˺äˈ¯Ò«ÒãÒÓË®ÓÈ«ÈãË­¯ÈµäÓºmkp



  |¹¯ËËãËÓÒË ¯ºmËËä˯ËÏ}È΂ ˆº}‚Óȹ¯Èmã« Ë®ãÒÓÒÒ¹¯«ä‚  ÓÈÏ©mÈË
             ä‚  viéjoyínp  ¹¯º²º«‚  ˯ËÏ ÓË}ºˆº¯‚  ÁÒ}°Ò¯ºmÈÓӂ  ÓË
                    ¹¯ÒÓÈãËÎȝ‚  Óȹ¯Èmã« Ë® ˆº}‚                                         ÓÈÏ©mÈËä‚  kné¡qtvp 
                              x0
                         →
                         r0 = y 0 
                              z0
                        vºmº}‚¹Óº°ˆ m°Ë²ˆºË}¹¯º°ˆ¯ÈÓ°ˆmÈãËÎȝҲÓȺ­¯Èς Ò²ÈÓ
                        ÓººmÒÈÓÈÏ©mÈˈ°«rvtq·nxrvpwvkné}tvxzí
            
            
            vº°ˆÈmÒ䂯ÈmÓËÓÒË}ºÓÒ˰}º®¹ºm˯²Óº°ˆÒmº­ËämÒË
            
                                                                                      →        →         →
            kÓÈãºÒÓº¯È°°äºˆ¯ËÓÓºä‚m© ˰ã‚È  r = F (ϕ ) + NM Óº¹ºº¹¯ËËãËÓÒ 
                                                                      →           →    →
}ºÓÒ˰}º® ¹ºm˯²Óº°ˆÒ ÒÏ ¯Ò°  NM = θ ( r0 − F (ϕ ))  Ò °ã˺mȈËã Óº ‚¯ÈmÓËÓÒË
}ºÓÒ˰}º®¹ºm˯²Óº°ˆÒmmË}ˆº¯Óº®Áº¯äËÒäËˈmÒ
       
                                                   →                        →              →
                                                   r (ϕ , θ ) = (1 − θ ) F (ϕ ) + θ r0 ,
                                                                                         
                                                   ϕ ∈ Ω , θ ∈ ( −∞,+∞) .
       
{}ºº¯ÒÓȈӺ®Áº¯ä˹º°ãËÒ°}ã ËÓÒ«θ¹ºã‚ÈËä

                                            x − Fx (ϕ )    y − Fy (ϕ )   z − Fz (ϕ )
                                                         =             =              
                                            x 0 − Fx (ϕ ) y 0 − Fy (ϕ ) z 0 − Fz (ϕ )
            
            
 ¯Òä˯                 Íé¹uj¹réymvkj¹rvtq·nxrj¹wvkné}tvxzã«}ºˆº¯º®mº¯ˆºÓº¯äÒ¯º
                  mÈÓÓº®°Ò°ˆËäË}ºº¯ÒÓȈ
                         
                                Óȹ¯Èmã« Ë®°ã‚Î҈º}¯‚ÎÓº°ˆ ¯È҂°ÈãËÎȝȫm¹ãº°
                                  }º°ˆÒ¹Ë¯¹ËÓÒ}‚㫯Ӻ®º°Òȹ¹ãÒ}Ȉ°Ëӈ¯ºämÓÈÈãË}º
                                  º¯ÒÓȈ
                                                                                0
                                                                                                             →
                                Òº­¯Èς ÒäÒ¹¯º²º«ÒäÒ˯Ëψº}‚ r0 = 0 
                                                                               −1
                         ÏÈÈˈ°«°ÒFˆË亮‚°ãºmÒ®
                         
                                                     x − 3 cosϕ y − 3 sin ϕ    z
                                                               =            =    , ϕ ∈[0,2π ) 
                                                      − 3 cosϕ   − 3 sin ϕ    −1
            
            ~ÈäˈÒ䈺˰ãÒÒϹºã‚ËÓÓ©²°ººˆÓº ËÓÒ®Ò°}ã ҈ ˆÈ}ÎËҹȯÈäˈ¯ ϕ
                                                  x2 y2
ˆº¹ºã‚҈°«‚¯ÈmÓËÓÒËmÒÈ                        +   − ( z + 1) 2 = 0 ˆº˰ˆ  N = 2 .
                                                  9   9