Аналитическая геометрия и линейная алгебра. Умнов А.Е. - 87 стр.

UptoLike

Составители: 

Рубрика: 

cÈÏËã


sËãÒÓˮөËºË}©ÓÈ¹ãº°}º°ÒÒm¹¯º°¯ÈÓ°mË
ÒÓÒÒmº¯ºº¹º¯«}ÈÓÈ¹ãº°}º°Ò
° ÓÈ ¹ãº°}º°Ò ÈÓÈ vézvtvéuqévkjttj¹ °Ò°ËäÈ }ºº¯ÒÓÈ
{, , }
Oe e
12
→→
Ò
ÓË}ºº¯È«ãÒÓÒ«
L

|¹¯ËËãËÓÒË

{°ººmË°mÒÒ°º¹¯ËËãËÓÒ«äÒÒËäºmº¯ÒºãÒ
ÓÒ«
L
«mã«Ë°«jsmniéjq·nxrvpsqtqnpkzvévmvwvé¹lrj˰ãÒËË¯Èm
ÓËÓÒËmÈÓÓº®°Ò°ËäË}ºº¯ÒÓÈÒäËËmÒ

Ax Bxy Cy Dx Ey F
22
2220
+++++=



ËÒ°ãÈ
A

B
Ò
C
ÓË¯ÈmÓ©ÓãºÓºm¯ËäËÓÓº
ABC
++>
0

È
x
Ò
y
˰}ºº¯ÒÓÈ©¯ÈÒ°mË}º¯Èº}ÒãËÎÈË®ÓÈãÒÓÒÒ
L

º°}ºã}}ºªÁÁÒÒËÓ©¯ÈmÓËÓÒ«ÏÈmÒ°«ºm©º¯È°Ò°Ëä©}ºº¯Ò
ÓÈ ¹¯Ò Ò°°ã˺mÈÓÒÒ °mº®°m ãÒÓÒ® mº¯ºº ¹º¯«}È Ëã˰ºº¯ÈÏÓº ¹¯ËmȯÒËãÓº
¹Ë¯Ë®Ò m  °Ò°Ëä }ºº¯ÒÓÈ ã« }ºº¯º® ÏȹҰ ¯ÈmÓËÓÒ« ãÒÓÒÒ º}ÈÏ©mÈË°«
ÓÈÒºãËË¹¯º°º®
p°ãÒmm˰ÒººÏÓÈËÓÒË
∆= = det
AB
BC
AC B
2
ºË°¹¯ÈmËãÒmÈ
˺¯ËäÈ

iã« ã
º® ãÒÓÒÒ mº¯º
º ¹º¯«
}È °˰mË º¯ºÓº¯äÒ¯ºmÈÓÓÈ«
°Ò°ËäÈ}ºº¯
ÒÓÈ
{,,}
′′
→→
Oee
12

m}ºº¯º®¯ÈmÓËÓÒËªº®ãÒÓÒÒÒäË
Ë¹¯Ò
abp
>> >
00 0,,
º
ÒÓÒÏ°ãË
Ò²
Ëm«ÒÓÈÏ©mÈË䩲
}ÈÓºÓÒ˰}ÒäÒ
mÒºm
Íyxznutv
nxzkj
Òv·rq
fvkwjljí
qnwé¹un
Ënxvkwjljíqn
wé¹un
Çéqkn
∆>0
+
=−
x
a
y
b
2
2
2
2
1
+
=
x
a
y
b
2
2
2
2
0

êssqwx
+
=
x
a
y
b
2
2
2
2
1
∆<0

=
x
a
y
b
2
2
2
2
0
qwnéivsj
=
x
a
y
b
2
2
2
2
1
∆=
0
=−
ya
22
=
y
2
0
=
ya
22
Íjéjivsj
=
ypx
2
2
cÈÏËã 
sËãÒÓˮө˺­žË}ˆ©Óȹ㺰}º°ˆÒÒm¹¯º°ˆ¯ÈÓ°ˆmË



ÒÓÒÒmˆº¯ºº¹º¯«}ÈÓȹ㺰}º°ˆÒ
             
             
             
                                                                                                                                                  →   →
             ‚°ˆ  ÓÈ ¹ãº°}º°ˆÒ ÈÓÈ vézvtvéuqévkjttj¹ °Ò°ˆËäÈ }ºº¯ÒÓȈ {O, e1 , e2 }  Ò
ÓË}ºˆº¯È«ãÒÓÒ«L
         
         
 |¹¯ËËãËÓÒË {°ººˆmˈ°ˆmÒÒ°º¹¯ËËãËÓÒ«äÒÒ­‚Ëäºmº¯Òˆ ˆºãÒ
 
              ÓÒ« L«mã«Ëˆ°«jsmniéjq·nxrvpsqtqnpkzvévmvwvé¹lrj˰ãÒËË‚¯Èm
              ÓËÓÒËmÈÓÓº®°Ò°ˆËäË}ºº¯ÒÓȈÒäËˈmÒ
              
                                 Ax 2 + 2 Bxy + Cy 2 + 2 Dx + 2 Ey + F = 0   
                                
                                ËÒ°ãÈ A  BÒ CÓ˯ÈmÓ©ӂã ºÓºm¯ËäËÓÓº  A + B + C > 0  
                ÈxÒy˰ˆ }ºº¯ÒÓȈ©¯È҂°mË}ˆº¯Èˆº}ÒãËÎȝˮÓÈãÒÓÒÒL
        
        
        º°}ºã }‚}ºªÁÁÒÒËӈ©‚¯ÈmÓËÓÒ«ÏÈmÒ°«ˆºˆm©­º¯È°Ò°ˆËä©}ºº¯Ò
ÓȈ ¹¯Ò Ò°°ã˺mÈÓÒÒ °mº®°ˆm ãÒÓÒ® mˆº¯ºº ¹º¯«}È Ëã˰ºº­¯ÈÏÓº ¹¯Ëmȯ҈Ëã Óº
¹Ë¯Ë®ˆÒ m ˆ‚ °Ò°ˆËä‚ }ºº¯ÒÓȈ ã« }ºˆº¯º® ÏȹҰ  ‚¯ÈmÓËÓÒ« ãÒÓÒÒ º}ÈÏ©mÈˈ°«
ÓÈÒ­ºãË˹¯º°ˆº®
                                                                              A B
             p°ãÒmm˰ˆÒº­ºÏÓÈËÓÒË ∆ = det                                     = AC − B 2 ˆº­‚ˈ°¹¯ÈmËãÒmÈ
                                                                              B C
             
             
    ‘˺¯ËäÈ                    iã« ã ­º® ãÒÓÒÒ mˆº¯ºº ¹º¯«}È °‚Ë°ˆm‚ˈ º¯ˆºÓº¯äÒ¯ºmÈÓÓÈ«
                                                                     → →
                                °Ò°ˆËäÈ}ºº¯ÒÓȈ {O ′, e1′ , e2′ } m}ºˆº¯º®‚¯ÈmÓËÓÒ˪ˆº®ãÒÓÒÒÒäË
                                ˈ ¹¯Ò a > 0 , b > 0 , p > 0 ºÒÓÒϰãË‚ Ò²Ëm«ˆÒ ÓÈÏ©mÈË䩲
                                }ÈÓºÓÒ˰}ÒäÒ mÒºm
             
                              
                                                                                                              
                                                                                                                                          
                 Íyxz€nutv                                                fvkwjljí          Ënxvkwjljíqn
                                                          Òv·rq                                                                       Çéqk€n
                    nxzkj                                                  qnwé¹u€n             wé¹u€n                               
                                                                                                                                  êssqwx
    ∆ > 0    x′     2
                               y′   2
                                                 x′   2
                                                              y′   2
                                                                                                                                   x′2 y′2
                     2    +        2    = −1        2    +        2   =0                                                             + 2 = 1
                 a             b                 a            b                                                                    a2  b
                                                              
                                                                                                            
                                                                                                                                     ­qwnéivsj
                                                                                                    x′  2
                                                                                                         y′2
    ∆ < 0                                                                                             −     =0                   x′2 y′2
                                                                                                    a2   b2                           − 2 = 1
                                                                                                                                   a2  b
                                                                                                                                         


    ∆ = 0               y ′ = −a 
                           2             2
                                                                              y′ = 0
                                                                                  2
                                                                                                         y′ = a 
                                                                                                            2       2                Íjéjivsj
                                                                                                                                      y ′ 2 = 2 px ′