Аналитическая геометрия и линейная алгебра. Умнов А.Е. - 88 стр.

UptoLike

Составители: 

Рубрика: 


Ë} ÒÒ}ÈÁË ¯©m©° Ë®äÈËäÈÒ}Òlnj
ÙkÓÈãÒÒ˰}È«˺äË¯Ò«ÒãÒÓË®ÓÈ«ÈãË¯Èµ

äÓºmkp
iº}ÈÏÈËã°mº
° ¯ËmȯÒËãÓºÏÈäËÒäºËÏº¯ÈÓÒËÓÒ«ºÓº°ÒäºÎÓº°ÒÈm©
¹ºãÓËÓÓ©äÒ°ãºmÒ«
B 0
Ò
AC

iË®°mÒËãÓº ˰ãÒ
B
<
0
 º äºÎÓº ÒÏäËÓÒ ÏÓÈ}Ò m°Ë² }ºªÁÁÒÒËÓºm m
¯ÈmÓËÓÒÒp°ãÒÎË
AC
<
º¹Ë¯Ë®«}Óºmº®º¯ºÓº¯äÒ¯ºmÈÓÓº®°Ò°
ËäË }ºº¯ÒÓÈ ã« }ºº¯º®
=
=
=
→→→→
eeeeOO
1221
;;
 ä© ¹ºãÈËä ÎËãÈËäºË
°ººÓºËÓÒË ¹º°}ºã}¹¯ÒÈ}ºä¹Ë¯Ë²ºË ÒäË ä˰º ¯ÈmËÓ°mÈ
xy yx
=
=
;
m°Òãm˯ÎËÓÒ®¹~ÈäËÒäÈ}ÎËº
det det
CB
BA
AB
BC
==

° p°ãÒ
B = 0
 º ¹Ë¯Ë²ºÒä } ¹Ó} ° p°ãÒ ÎË
B > 0
 º ¹Ë¯Ë®Ëä}Óºmº®
°Ò°ËäË}ºº¯ÒÓÈ¹ºãÈË亮ÒÏÒ°²ºÓº®¹ºmº¯ººämº}¯º}Ò
O
ÓÈºã
0
4
<≤
α
π
È}º®º }ºªÁÁÒÒËÓ ¹¯Ò ¹¯ºÒÏmËËÓÒÒ
′′
xy
º}ÈÎË°« ¯ÈmÓ©ä
Óã
{©mËËä¹¯ÈmÒãºm©º¯ÈªººãÈcȰ°äº¯Òä¹ºmº¯º°ä¹
=+
=− +
→→
→→
ee e
ee e
11 2
21 2
cos sin
sin cos
αα
αα
°
OO o
=
→→
Ò°ººmË°mËÓÓº
xx y
yx y
=
=
+
cos sin
sin cos
αα
αα

º°Èmã«« m©¯ÈÎËÓÒ« ã« Ù°ȯ©²µ }ºº¯ÒÓÈ ˯ËÏ ÙÓºm©Ëµ ¹ºãÈËä
¯ÈmÓËÓÒËmmÒË
Ax y Bx y x y
Cx y Dx y Ex y F
(cos sin) (cos sin)(sin cos)
(sin cos) (cos sin) (sin cos)
+
′′
+
+
+
+
+
+
+
+=
αα αααα
αα αα αα
2
2
2
22 0
ÒãÒÎË
′′
+
′′′
+
′′
+
′′
+
′′
+
=
Ax Bxy Cy Dx Ey F
22
2220

|°ÈÓȲºÒäº
.cossincos2sin
cossin2sin2cos2cossin22
sinsincos2cos
22
22
22
αααα
αααααα
αααα
CBAC
CBBAB
CBAA
+=
++=
++=
 Ë }  Ò Ò    } È Á Ë  ¯ ©   m © °  Ë ®   ä È ˆ Ë ä È ˆ Ò } Ò   l n ‘ j 
ÙkÓÈã҈Ò˰}È«˺äˈ¯Ò«ÒãÒÓË®ÓÈ«ÈãË­¯ÈµäÓºmkp



   iº}ÈÏȈËã°ˆmº
    
    ° ¯Ëmȯ҈Ëã ÓºÏÈäˈÒ䈺­ËϺ¯ÈÓÒËÓÒ«º­Óº°ˆÒäºÎÓº°҈Ȉ m©
          ¹ºãÓËÓÓ©äÒ‚°ãºmÒ« B ≥ 0 Ò A ≥ C 
    
          iË®°ˆm҈Ëã Óº ˰ãÒ B < 0  ˆº äºÎÓº ÒÏäËÓ҈  ÏÓÈ}Ò m°Ë² }ºªÁÁÒÒËӈºm m
          ‚¯ÈmÓËÓÒÒp°ãÒÎË A < C ˆº¹Ë¯Ë®«}Óºmº®º¯ˆºÓº¯äÒ¯ºmÈÓÓº®°Ò°
                                                                   →    →        →   →
              ˆËäË }ºº¯ÒÓȈ ã« }ºˆº¯º® e1′ = e2 ; e2′ = e1 ; O ′ = O  ä© ¹ºã‚ÈËä ÎËãÈËäºË
              °ººˆÓº ËÓÒË ¹º°}ºã }‚ ¹¯Ò ˆÈ}ºä ¹Ë¯Ë²ºË ÒäË ˆ ä˰ˆº ¯ÈmËÓ°ˆmÈ
              x = y ′ ; y = x ′ m°Òã‚‚ˆm˯ÎËÓÒ®¹~ÈäˈÒäˆÈ}Îˈº
                                                               C       B       A B
                                                        det              = det     = ∆ 
                                                               B       A       B C
     
     
     ° p°ãÒ B = 0  ˆº ¹Ë¯Ë²ºÒä } ¹‚Ó}ˆ‚ ° p°ãÒ ÎË B > 0  ˆº ¹Ë¯Ë®Ëä } Óºmº®
           °Ò°ˆËäË}ºº¯ÒÓȈ¹ºã‚ÈË亮ÒÏÒ°²ºÓº®¹ºmº¯ºˆºämº}¯‚ˆº}ÒOÓÈ‚ºã
                        π
              0<α ≤        ˆÈ}º® ˆº }ºªÁÁÒÒËӈ ¹¯Ò ¹¯ºÒÏmËËÓÒÒ x ′y ′  º}ÈÎˈ°« ¯ÈmÓ©ä
                        4
              ӂã 
     
              {©mËË乯ÈmÒãºm©­º¯Èªˆºº‚ãÈcȰ°äºˆ¯Ò乺mº¯ºˆ °ä¹ 
              
                                                   e→′ = e→ cosα + e→ sin α        →     →
                                                   →
                                                       1
                                                             →
                                                              1
                                                                        →
                                                                         2
                                                                                ° OO ′ = o 
                                                   e2′ = − e1 sin α + e2 cosα
                                                                             
              Ò°ººˆmˈ°ˆmËÓÓº
                                                                             

                                                            x = x ′ cos α − y ′ sin α
                                                                                      
                                                            y = x ′ sin α + y ′ cos α
                                                 
              º°ˆÈmã«« m©¯ÈÎËÓÒ« ã« Ù°ˆÈ¯©²µ }ºº¯ÒÓȈ ˯ËÏ ÙÓºm©Ëµ ¹ºã‚ÈËä
              ‚¯ÈmÓËÓÒËmmÒË
              
                  A( x ′ cos α − y ′ sin α ) 2 + 2 B( x ′ cos α − y ′ sin α )( x ′ sin α + y ′ cos α ) +
                                                                                                                                            
                  + C ( x ′ sin α + y ′ cos α ) 2 + 2 D( x ′ cos α − y ′ sin α ) + 2 E ( x ′ sin α + y ′ cos α ) + F = 0
              
              ÒãÒÎË A ′x ′ 2 + 2 B ′x ′y ′ + C ′y ′ 2 + 2 D ′x ′ + 2 E ′y ′ + F ′ = 0 
              
              |ˆ° ÈÓȲºÒ䈺
          
                                    A′ = A cos 2 α + 2 B cosα sin α + C sin 2 α
                                  2 B′ = −2 A sin α cosα + 2 B cos 2 α − 2 B sin 2 α + 2C sin α cosα 
                                   C ′ = A sin 2 α − 2 B cosα sin α + C cos 2 α.