Аналитическая геометрия и линейная алгебра. Умнов А.Е. - 90 стр.

UptoLike

Составители: 

Рубрика: 


Ë} ÒÒ}ÈÁË ¯©m©° Ë®äÈËäÈÒ}Òlnj
ÙkÓÈãÒÒ˰}È«˺äË¯Ò«ÒãÒÓË®ÓÈ«ÈãË¯Èµ

äÓºmkp
°{ ÈãÓˮҲ ¯È°°ÎËÓÒ«² Ëä ¹ºãÈÈ º
B = 0
Ò ¯È°°äº¯Òä ºËãÓº
°ãÈÒ∆≠Ò ã«¯ÈmÓËÓÒ«mÒÈ
Ax Cy Dx Ey F
22
22 0
++ ++=

°
∆≠
wººÏÓÈÈËº
A
0
Ò
C
0
Ò¯ÈmÓËÓÒËãÒÓÒÒäºÎË©¹Ë
¯Ë¹Ò°ÈÓºmmÒË
Ax
D
A
Cy
E
C
D
A
E
C
F
(
)
(
)
+++=+
22
22

|ºÏÓÈÒä
P
D
A
E
C
F=+
22
ºÈ¹Ë¯Ë®«}Óºmº®°Ò°ËäË}ºº¯ÒÓÈ
=
=
=
=
=
C
E
yy
A
D
xx
e
C
E
e
A
D
OO
ee
ee
;
21
22
11

¹ºãÒä
Ax Cy P
+
=
22
Òº}ÈÓ˹º°¯Ë°mËÓÓº°ãËËº
±
±
±
±
==
x
P
A
y
P
C
P
x
C
y
A
P
2
2
2
2
2
2
2
2
10
00
(
)
(
)
|| ||
;
|| ||
;
Òä©¹¯Ò²ºÒäÈ}Òäº¯ÈϺä}ºÓºäÒÏ˰Ò°ãËÒ²¯ÈmÓËÓÒ®
+
=
+
=
+
=− >
=
=
=− <
x
a
y
b
x
a
y
b
x
a
y
b
x
a
y
b
x
a
y
b
x
a
y
b
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
01 10
01 10
;; ,
;; ,.
Ë
Ë
˯m©Ë ¹« ÒÏ ªÒ² °ãÈËm °ºË¯ÎÈ°« m Áº¯äãÒ¯ºm}Ë ˺¯Ëä© È ˰º®
°mºÒ°«} ¹«ºääÓºÎËÓÒËäºËÒ² ȰË®¯ÈmÓËÓÒ« ÓÈ °¹º°ãËÒä
mÏÈÒäÓ©ä¹Ë¯ËººÏÓÈËÓÒËä¹Ë¯ËäËÓÓ©²
x
Ò
y

°
°
wººÏÓÈÈËº
AC = 0
º˰ãÒº
A = 0
ãÒº
C = 0
Óº
ÓËmä˰Ë°
A = 0
˰ãÒªºÓËÈ}ºmÏÈÒäÓº¹Ë¯ËººÏÓÈÒä¹Ë¯ËäËÓ
Ó©Ë
x
Ò
y
ºÈ¯ÈmÓËÓÒËãÒÓÒÒ
Cy Dx Ey F
2
22 0+++=
äºÎË©ÏÈ
¹Ò°ÈÓºmmÒË
Cy
E
C
E
C
FDx C
(
)
,
+=
2
2
20

 Ë }  Ò Ò    } È Á Ë  ¯ ©   m © °  Ë ®   ä È ˆ Ë ä È ˆ Ò } Ò   l n ‘ j 
ÙkÓÈã҈Ò˰}È«˺äˈ¯Ò«ÒãÒÓË®ÓÈ«ÈãË­¯ÈµäÓºmkp



   °{ Èã ÓË® Ò² ¯È°°‚ÎËÓÒ«² ­‚Ëä ¹ºãÈȈ  ˆº B = 0  Ò ¯È°°äºˆ¯Òä ºˆËã Óº
        °ã‚ÈÒ∆≠Ò∆ ã«‚¯ÈmÓËÓÒ«mÒÈ Ax 2 + Cy 2 + 2 Dx + 2 Ey + F = 0 
         
         ‚°ˆ ∆≠wˆººÏÓÈÈˈˆº A ≠ 0 Ò C ≠ 0 Ò‚¯ÈmÓËÓÒËãÒÓÒÒäºÎˈ­©ˆ ¹Ë
                                                  D                                    E               D2 E 2
          ¯Ë¹Ò°ÈÓºmmÒË A x +         (        A   )   2
                                                              +C y+   (                C   )   2
                                                                                                   =
                                                                                                       A
                                                                                                         +
                                                                                                           C
                                                                                                              − F 

                         D2 E 2
          |­ºÏÓÈÒä P =   +    − F ˆºÈ¹Ë¯Ë®«}Óºmº®°Ò°ˆËäË}ºº¯ÒÓȈ
                         A   C
          
                                                         → →
                                                         e1′ = e1                                                   D
                                                         →     →                                           x = x′ − A
                                                        e ′2 = e 2     ;                                              
                                                                                                                      E
                                                   →        D  →   E →                                     y = y′ −
                                                  OO ′ = − e1 − e 2                                                 C
                                                             A     C
          
          ¹ºã‚Òä Ax ′ 2 + Cy ′ 2 = P Òºˆ}‚ÈÓ˹º°¯Ë°ˆmËÓÓº°ãË‚ˈˆº
          
                                                          x′2                              y′2
                                              ±                                ±                           = ±1 ;     P≠0
                                                           P                                P
                                                  (       | |
                                                           A          ) ( 2
                                                                                           | |
                                                                                            C      )   2

                                                                                                                              
                                                    x′    2
                                                                              y′   2
                                              ±                   ±                    =0 ;                P=0
                                                              2
                                                      |C |                    | A |2
          
          Ò䩹¯Ò²ºÒäˆÈ}Ò亭¯ÈϺä}ºÓºä‚ÒÏ ˰ˆÒ°ãË‚ Ò²‚¯ÈmÓËÓÒ®
          
          
                         x′2      y′2                  x′2                y′2                          x′2      y′2
                             + 2 =0 ;      + 2 =1 ;      + 2 = −1 , Ë ∆ > 0
                         a2    b       a2    b       a2    b
                                                                                
                        x′ 2
                              y′ 2
                                      x′ 2
                                            y′ 2
                                                    x′ 2
                                                          y′2
                             − 2 =0 ;      − 2 =1 ;      − 2 = −1 , Ë ∆ < 0 .
                        a2    b       a2    b       a2    b
                                                      
          Ë¯m©Ë ¹«ˆ  ÒÏ ªˆÒ² °ã‚ÈËm °º˯ÎȈ°« m Áº¯ä‚ãÒ¯ºm}Ë ˆËº¯Ëä© È ˰ˆº®
          °mº҈°« } ¹«ˆºä‚ ‚äÓºÎËÓÒËä º­ËÒ² ȰˆË® ‚¯ÈmÓËÓÒ« ÓÈ  ° ¹º°ãË‚ Òä
          mÏÈÒäÓ©ä¹Ë¯Ëº­ºÏÓÈËÓÒËä¹Ë¯ËäËÓÓ©² x ′ Ò y ′ 
          
          
           °‚°ˆ ∆ wˆººÏÓÈÈˈˆº AC = 0 ˆº˰ˆ ãÒ­º A = 0 ãÒ­º C = 0  Óº
          ÓËmä˰ˆË ‚°ˆ  A = 0  ˰ãÒªˆºÓˈÈ}ˆºmÏÈÒäÓº¹Ë¯Ëº­ºÏÓÈÒä¹Ë¯ËäËÓ
          Ó©Ë x ′ Ò y ′  ˆºÈ‚¯ÈmÓËÓÒËãÒÓÒÒ Cy 2 + 2 Dx + 2 Ey + F = 0 äºÎˈ­©ˆ ÏÈ
          ¹Ò°ÈÓºmmÒË
                                                                  E             E2
                                                  (
                                               C y+
                                                                  C   )   2
                                                                              =
                                                                                C
                                                                                   − F − 2 Dx                    , C ≠ 0