Аналитическая геометрия и линейная алгебра. Умнов А.Е. - 92 стр.

UptoLike

Составители: 

Рубрика: 


Ë} ÒÒ}ÈÁË ¯©m©° Ë®äÈËäÈÒ}Òlnj
ÙkÓÈãÒÒ˰}È«˺äË¯Ò«ÒãÒÓË®ÓÈ«ÈãË¯Èµ

äÓºmkp
°º¯Òäº}ÈÏÈËã°mÈ˺¯Ëä©äºÎÓºÒ°¹ºãϺmÈ}È}ã«
ÓȲºÎËÓÒ«}ÈÓºÓÒ˰}ºº È¯ÈmÓËÓÒ« ãÒÓÒÒmº¯ºº ¹º¯«}È
È} Ò ã« ¹º°¯ºËÓÒ« rjtvtq·nxrvp xqxznu rvvélqtjz º ˰
°Ò°Ëä©}ºº¯ÒÓÈm}ºº¯º®ÈÓÓÈ«ãÒÓÒ«mº¯ºº¹º¯«}ÈÒäËË
}ÈÓºÓÒ˰}Ò®mÒ
j°°ã˺mÈÓÒË }ºÓ}¯ËÓ©² °mº®°m ¯ÈÏãÒÓ©² Ò¹ºm ãÒÓÒ® mº¯ºº ¹º¯«}È
¹¯ÒmºÒ°«m¯ÒãºÎËÓÒÒ
ºm˯²Óº°Òmº¯ºº¹º¯«}Èm¹¯º°¯ÈÓ°mË
°ÈÓÈvézvtvéuqévkjttj¹°Ò°ËäÈ}ºº¯ÒÓÈ
{, , , }
Oe e e
123
→→
m¹¯º°¯ÈÓ°mË
|¹¯ËËãËÓÒË

{°ººmË°mÒÒ°º¹¯ËËãËÓÒ«äÒÒËäºmº¯Òº¹º
m˯²Óº°
S
«mã«Ë°« jsmniéjq·nxrvp wvkné}tvxzí kzvévmv wvé¹lrj
˰ãÒËË¯ÈmÓËÓÒËmÈÓÓº®°Ò°ËäË}ºº¯ÒÓÈÒäËËmÒ

Ax Ay Az Axy Axz Ayz
Ax Ay Az A
11
2
22
2
33
2
12 13 23
14 24 34 44
222
222 0
+++ + + +
++++=
,

ËÒ°ãÈ
AAAAAA
11 22 33 12 13 23
;;;;;
ÓË¯ÈmÓ©ÓãºÓºm¯ËäËÓÓºÈ
x,
y
Ò
z
˰}ºº¯ÒÓÈ©¯ÈÒ°mË}º¯Èº}ÒãËÎÈË®ÓÈÈÓÓº®¹º
m˯²Óº°Ò
S

zÈ} Ò m ¹ãº°}ºä °ãÈË }ºªÁÁÒÒËÓ© ¯ÈmÓËÓÒ«  ÏÈmÒ°« º m©º¯È
°Ò°Ëä© }ºº¯ÒÓÈ ¹ºªºä ¹¯Ò Ò°°ã˺mÈÓÒÒ °mº®°m ¹ºm˯²Óº°Ë® mº¯ºº ¹º¯«}È
Ëã˰ºº¯ÈÏÓº ¹¯ËmȯÒËãÓº ¹Ë¯Ë®Ò m  °Ò°Ëä }ºº¯ÒÓÈ ã« }ºº¯º® ÏȹҰ
¯ÈmÓËÓÒ«¹ºm˯²Óº°Òº}ÈÏ©mÈË°«ÓÈÒºãËË¹¯º°º®
˺¯ËäÈ

iã«}ÈÎ
º®¹ºm˯²Óº°Òmº¯º
º¹º¯«
}È°˰mËº¯ºÓº¯äÒ¯º
mÈÓÓÈ« °Ò°ËäÈ }ºº¯ÒÓÈ
{,,,}
′′
→→
Oeee
123
m }ºº¯º® ¯ÈmÓËÓÒË ªº®
¹ºm˯²Óº°Ò ÒäËË º
ÒÓ ÒÏ °ãË
Ò² °ËäÓÈ

ÈÒ }ÈÓºÓÒ
˰}Ò²
ºm
 Ë }  Ò Ò    } È Á Ë  ¯ ©   m © °  Ë ®   ä È ˆ Ë ä È ˆ Ò } Ò   l n ‘ j 
ÙkÓÈã҈Ò˰}È«˺äˈ¯Ò«ÒãÒÓË®ÓÈ«ÈãË­¯ÈµäÓºmkp



                     °k㺯҈äº}ÈÏȈËã °ˆmȈ˺¯Ëä©äºÎÓºÒ°¹ºã ϺmȈ }È}ã«
                         ÓȲºÎËÓÒ« }ÈÓºÓÒ˰}ºº mÒÈ ‚¯ÈmÓËÓÒ« ãÒÓÒÒ mˆº¯ºº ¹º¯«}È
                         ˆÈ} Ò ã« ¹º°ˆ¯ºËÓÒ« rjtvtq·nxrvp xqxznu€ rvvélqtjz ˆº ˰ˆ 
                         °Ò°ˆËä©}ºº¯ÒÓȈm}ºˆº¯º®ÈÓÓÈ«ãÒÓÒ«mˆº¯ºº¹º¯«}ÈÒäËˈ
                         }ÈÓºÓÒ˰}Ò®mÒ
          
          
          j°°ã˺mÈÓÒË }ºÓ}¯ËˆÓ©² °mº®°ˆm ¯ÈÏãÒÓ©² ˆÒ¹ºm ãÒÓÒ® mˆº¯ºº ¹º¯«}È
¹¯Òmº҈°«m¯ÒãºÎËÓÒÒ
          
          
          
          
ºm˯²Óº°ˆÒmˆº¯ºº¹º¯«}Èm¹¯º°ˆ¯ÈÓ°ˆmË
            
            
                                                                                                       →    →   →
         ‚°ˆ ÈÓÈvézvtvéuqévkjttj¹°Ò°ˆËäÈ}ºº¯ÒÓȈ {O, e1 , e2 , e3 } m¹¯º°ˆ¯ÈÓ°ˆmË
         
         
 |¹¯ËËãËÓÒË   {°ººˆmˈ°ˆmÒÒ°º¹¯ËËãËÓÒ«äÒÒ­‚Ëäºmº¯Òˆ ˆº¹º
 
                m˯²Óº°ˆ  S «mã«Ëˆ°« jsmniéjq·nxrvp wvkné}tvxzí kzvévmv wvé¹lrj
                ˰ãÒËË‚¯ÈmÓËÓÒËmÈÓÓº®°Ò°ˆËäË}ºº¯ÒÓȈÒäËˈmÒ
                
                
                                      A11 x 2 + A22 y 2 + A33 z 2 + 2 A12 xy + 2 A13 xz + 2 A23 yz +
                                                                                           
                                      + 2 A14 x + 2 A24 y + 2 A34 z + A44 = 0 ,
                         
                         
                         ËÒ°ãÈ A11 ; A22 ; A33 ; A12 ; A13 ; A23 Ó˯ÈmÓ©ӂã ºÓºm¯ËäËÓÓºÈ x,
                         yÒ z˰ˆ }ºº¯ÒÓȈ©¯È҂°mË}ˆº¯Èˆº}ÒãËÎȝˮÓÈÈÓÓº®¹º
                         m˯²Óº°ˆÒS
         
         
         
         zÈ} Ò m ¹ãº°}ºä °ã‚ÈË }ºªÁÁÒÒËӈ© ‚¯ÈmÓËÓÒ«   ÏÈmÒ°«ˆ ºˆ m©­º¯È
°Ò°ˆËä© }ºº¯ÒÓȈ ¹ºªˆºä‚ ¹¯Ò Ò°°ã˺mÈÓÒÒ °mº®°ˆm ¹ºm˯²Óº°ˆË® mˆº¯ºº ¹º¯«}È
Ëã˰ºº­¯ÈÏÓº ¹¯Ëmȯ҈Ëã Óº ¹Ë¯Ë®ˆÒ m ˆ‚ °Ò°ˆËä‚ }ºº¯ÒÓȈ ã« }ºˆº¯º® ÏȹҰ 
‚¯ÈmÓËÓÒ«¹ºm˯²Óº°ˆÒº}ÈÏ©mÈˈ°«ÓÈÒ­ºãË˹¯º°ˆº®
         
         
         
 ‘˺¯ËäÈ        iã«}Èκ®¹ºm˯²Óº°ˆÒmˆº¯ºº¹º¯«}Ȱ‚Ë°ˆm‚ˈº¯ˆºÓº¯äÒ¯º
                                             → → →
                 mÈÓÓÈ« °Ò°ˆËäÈ }ºº¯ÒÓȈ {O ′ , e1′ , e2′ , e3′ }  m }ºˆº¯º® ‚¯ÈmÓËÓÒË ªˆº®
                 ¹ºm˯²Óº°ˆÒ ÒäËˈ ºÒÓ ÒÏ °ãË‚ Ò² °ËäÓÈȈÒ }ÈÓºÓÒ˰}Ò²
                 mÒºm