Аналитическая геометрия и линейная алгебра. Умнов А.Е. - 94 стр.

UptoLike

Составители: 

Рубрика: 


Ë} ÒÒ}ÈÁË ¯©m©° Ë®äÈËäÈÒ}Òlnj
ÙkÓÈãÒÒ˰}È«˺äË¯Ò«ÒãÒÓË®ÓÈ«ÈãË¯Èµ

äÓºmkp
j°°ã˺mÈÓÒË°mº®°m}ºÓ}¯ËÓ©²Ò¹ºm¹ºm˯²Óº°Ë®mº¯ºº¹º¯«}È¹¯Òmº
Ò°«m¯ÒãºÎËÓÒÒ
kã˯ÓÈÒmÓ©Ë°Ò°Ëä©}ºº¯ÒÓÈ
{ ¯«Ë ¹¯È}Ò˰}Ò² ¹¯ÒãºÎËÓÒ® º}ÈÏ©mÈË°« Ëã˰ºº¯ÈÏÓ©ä Ò°¹ºãϺmÈÓÒË
°Ò°Ëä}ºº¯ÒÓÈºãÒÓ©²ºË}ȯºmº®
ºã«¯ÓÈ«°Ò°ËäÈ}ºº¯ÒÓÈ
¯Òä˯ºä Èã˯ÓÈÒmÓº® °Ò°Ëä© }ºº¯ÒÓÈ ÓÈ ¹ãº°}º°Ò «mã«Ë°« wvs¹étj¹
xqxznujrvvélqtjz
ºãºÎËÓÒË º}ÒÓÈ ¹ãº°}º°Òm ªº®
°Ò°ËäË}ºº¯ÒÓÈ ÏÈÈË°«¹¯Ò ¹ºäºÒ¹È¯©
Ò°Ëã
{,}
ρ
ϕ
 Ë
ρ
=
OM
ϕ
=∠
→→
(,)
OM OP
ºmãËmº¯«ÒË º¯ÈÓÒËÓÒ«ä
ρ
0,
02
≤<
ϕπ

º}È
O
ÓÈÏ©mÈË°«wvsíxvuÈã
OP
wvs¹étvpvxíºã
ϕ
º°Ò©mÈË°«¹¯ºÒm
Ȱºmº® °¯Ëã}Ò ¯Ò°  iã« ¹ºã°È ªº
ºãÓËº¹¯ËËã«Ë°«
nº¯äã© ¹Ë¯Ë²ºÈ º º¯ºÓº¯äÒ¯º
mÈÓÓº® Ë}ȯºmº® °Ò°Ëä© }ºº¯ÒÓÈ } ¹º
㫯Ӻ®Òº¯ÈÓºÒäË°ãËÒ®mÒ
y
M(
ρ
,
ϕ
)

ρ


ϕ
OP x
èqxytvr
x
y
xy
x
xy
y
xy
=
=
=+
=
+
=
+
ρ
ϕ
ρ
ϕ
ρ
ϕϕ
cos
sin
cos ; sin
22
22 22

j°¹ºãϺmÈÓÒË ¹ºã«¯Óº® °Ò°Ëä© }ºº¯ÒÓÈ ¹ºÏmºã«Ë ¹¯º°Ò º¹Ò°ÈÓÒË
ºË}ºm ºãÈÈÒ² ºËÓº® °ÒääË¯ÒË® sȹ¯Òä˯ º}¯ÎÓº°ËÒÓÒÓºº
¯ÈÒ°È ° ËÓ¯ºämÓÈÈãË }ºº¯ÒÓÈ ÒäËÈ« m º¯ºÓº¯äÒ¯ºmÈÓÓº® Ë}ȯºmº®
°Ò°ËäË }ºº¯ÒÓÈ ¯ÈmÓËÓÒË
xy
22
1
+=
 m ¹ºã«¯Óº® °Ò°ËäË }ºº¯ÒÓÈ ÏÈÈË°«
°ãºmÒËä
ρ
=
1

 Ë }  Ò Ò    } È Á Ë  ¯ ©   m © °  Ë ®   ä È ˆ Ë ä È ˆ Ò } Ò   l n ‘ j 
ÙkÓÈã҈Ò˰}È«˺äˈ¯Ò«ÒãÒÓË®ÓÈ«ÈãË­¯ÈµäÓºmkp



          j°°ã˺mÈÓÒ˰mº®°ˆm}ºÓ}¯ËˆÓ©²ˆÒ¹ºm¹ºm˯²Óº°ˆË®mˆº¯ºº¹º¯«}ȹ¯Òmº
҈°«m¯ÒãºÎËÓÒÒ
          
          
          
          
k㠈˯ÓȈÒmө˰ҰˆËä©}ºº¯ÒÓȈ
       
       
       
       { ¯«Ë ¹¯È}ˆÒ˰}Ò² ¹¯ÒãºÎËÓÒ® º}ÈÏ©mÈˈ°« Ëã˰ºº­¯ÈÏÓ©ä Ò°¹ºã ϺmÈÓÒË
°Ò°ˆËä}ºº¯ÒÓȈºˆãÒÓ©²ºˆË}ȯˆºmº®
       
       
            

ºã«¯ÓÈ«°Ò°ˆËäÈ}ºº¯ÒÓȈ
           
           
           ¯Òä˯ºä È㠈˯ÓȈÒmÓº® °Ò°ˆËä© }ºº¯ÒÓȈ ÓÈ ¹ãº°}º°ˆÒ «mã«Ëˆ°« wvs¹étj¹
xqxznujrvvélqtjz
           
             ºãºÎËÓÒË ˆº}Ò ÓÈ ¹ãº°}º°ˆÒ m ªˆº® 
 °Ò°ˆËäË }ºº¯ÒÓȈ ÏÈÈˈ°« ¹¯Ò ¹ºäºÒ ¹È¯© y
 Ò°Ëã                                                  
                        →                →      →
 {ρ , ϕ }  Ë ρ = OM  ϕ = ∠ ( O M , O P )  M(ρ,ϕ)
                                                         
 ‚ºmãˈmº¯« ÒË          º¯ÈÓÒËÓÒ«ä       ρ ≥ 0 ,  
                                                         ρ
 0 ≤ ϕ < 2π                                                                ϕ
                                                        
             ‘º}È OÓÈÏ©mÈˈ°«wvsíxvuÈã‚ OP OP x
 wvs¹étvpvxíºãϕºˆ°҈©mÈˈ°«¹¯ºˆÒm 
 Ȱºmº® °ˆ¯Ëã}Ò ¯Ò°   iã« ¹ºã °È ªˆºˆ 
                                                         
 ‚ºãÓ˺¹¯ËËã«Ëˆ°«
                                                         
 
             nº¯ä‚ã© ¹Ë¯Ë²ºÈ ºˆ º¯ˆºÓº¯äÒ¯º èqxytvr
 mÈÓÓº® Ë}ȯˆºmº® °Ò°ˆËä© }ºº¯ÒÓȈ } ¹º
 㫯Ӻ®Òº­¯ÈˆÓºÒäË ˆ°ãË‚ Ò®mÒ
                                                 
                                                                       ρ = x2 + y2
                                 x = ρ cos ϕ        
                                                    cos ϕ =          x
                                                                             ; sin ϕ =
                                                                                                          y       
                                 y = ρ sin ϕ        
                                                                    x2 + y2                        x +y
                                                                                                      2       2

            
            
       j°¹ºã ϺmÈÓÒË ¹ºã«¯Óº® °Ò°ˆËä© }ºº¯ÒÓȈ ¹ºÏmºã«Ëˆ ‚¹¯º°ˆÒˆ  º¹Ò°ÈÓÒË
º­žË}ˆºm º­ãÈÈ Ò² ˆºËÓº® °Òääˈ¯ÒË® sȹ¯Òä˯ º}¯‚ÎÓº°ˆ  ËÒÓÒÓºº
¯È҂°È ° Ëӈ¯ºä m ÓÈÈãË }ºº¯ÒÓȈ ÒäË È« m º¯ˆºÓº¯äÒ¯ºmÈÓÓº® Ë}ȯˆºmº®
°Ò°ˆËäË }ºº¯ÒÓȈ ‚¯ÈmÓËÓÒË x 2 + y 2 = 1   m ¹ºã«¯Óº® °Ò°ˆËäË }ºº¯ÒÓȈ ÏÈÈˈ°«
‚°ãºmÒËä ρ = 1