Аналитическая геометрия и линейная алгебра. Умнов А.Е. - 96 стр.

UptoLike

Составители: 

Рубрика: 


Ë} ÒÒ}ÈÁË ¯©m©° Ë®äÈËäÈÒ}Ò
lnj
ÙkÓÈãÒÒ˰}È«˺äË¯Ò«ÒãÒÓË®ÓÈ«ÈãË¯Èµ

äÓºmkp
|¹¯ËËãËÓÒË

ÒÓÒ« ¯ÈmÓËÓÒË }ºº¯º® m ¹ºã«¯Óº® °Ò°ËäË }ºº¯ÒÓÈ ÒäËË
ρ
εϕ ε
( cos ) ; ;1000
−−=pp
ÓÈÏ©mÈË°«rvtq·nxrquxn·ntqnu
èqxytvrÍvxzévntqnrvtq·nxrq}xn·ntqp
vÁ˯Ò˰}È«°Ò°ËäÈ}ºº¯ÒÓÈ
{ ¯«Ë ¹¯È}Ò˰}Ò² ¹¯ÒãºÎËÓÒ® ¯ËÒ² ÈÓÈãÒÒ˰}ºº Ò°°ã˺mÈÓÒ«
¹¯º°¯ÈÓ°mËÓÓ©² ºË}ºm Ò°¹ºãÏË°« È} ÓÈÏ©mÈËäÈ« x{néq·nxrj¹ xqxznuj rvvé
lqtjz
ºãºÎËÓÒËº}Òm¹¯º°¯ÈÓ°mËmªº®°Ò°ËäËºÓºÏÓÈÓºÏÈÈË°«¹¯Ò¹º
äºÒ¯º®}ÒÒ°Ëã
^
ρ
,
ϕ
,
θ
`
¯Ò°Ë
=
OM
ρ
,
ϕθ
=∠ =∠
→→
(, ), ( ,)Ox OP OM Oz
,
}ºº¯©ËºmãËmº¯«º¯ÈÓÒËÓÒ«ä
ρ

ϕ

π
θ
π
 Ë }  Ò Ò    } È Á Ë  ¯ ©   m © °  Ë ®   ä È ˆ Ë ä È ˆ Ò } Ò  
ln‘j
ÙkÓÈã҈Ò˰}È«˺äˈ¯Ò«ÒãÒÓË®ÓÈ«ÈãË­¯ÈµäÓºmkp



  |¹¯ËËãËÓÒË      ÒÓÒ« ‚¯ÈmÓËÓÒË }ºˆº¯º® m ¹ºã«¯Óº® °Ò°ˆËäË }ºº¯ÒÓȈ ÒäËˈ mÒ
  
                     ρ (1 − ε cos ϕ ) − p = 0 ; ∀p ≥ 0 ; ∀ε ≥ 0 ÓÈÏ©mÈˈ°«rvtq·nxrquxn·ntqnu
          
          
          




                                                                                                                                
           
           
                                èqxytvrÍvxzévntqnrvtq·nxrq}xn·ntqp
           
           
           
           
vÁ˯Ò˰}È«°Ò°ˆËäÈ}ºº¯ÒÓȈ
        
        
        
        { ¯«Ë ¹¯È}ˆÒ˰}Ò² ¹¯ÒãºÎËÓÒ® ˆ¯Ë­‚ Ò² ÈÓÈã҈Ò˰}ºº Ò°°ã˺mÈÓÒ«
¹¯º°ˆ¯ÈÓ°ˆmËÓÓ©² º­žË}ˆºm Ò°¹ºã ςˈ°« ˆÈ} ÓÈÏ©mÈËäÈ« x{néq·nxrj¹ xqxznuj rvvé
lqtjz
        
        
        ºãºÎËÓÒˈº}Òm¹¯º°ˆ¯ÈÓ°ˆmËmªˆº®°Ò°ˆËä˺ӺÏÓÈÓºÏÈÈˈ°«¹¯Ò¹º
亝Òˆ¯º®}ÒÒ°Ëã^ρ, ϕ, θ` ¯Ò° Ë
        
                                          →                   →     →                    →     →
                                  ρ = OM , ϕ = ∠ (Ox , OP ) , θ = ∠ (OM , Oz ) ,
       
}ºˆº¯©Ë‚ºmãˈmº¯« ˆº¯ÈÓÒËÓÒ«äρ≥≤ϕπ≤θ≤π