Аналитическая геометрия и линейная алгебра. Умнов А.Е. - 95 стр.

UptoLike

Составители: 

Рубрика: 

cÈÏËã


sËãÒÓˮөËºË}©ÓÈ¹ãº°}º°ÒÒm¹¯º°¯ÈÓ°mË
ε
=1
)
¯Ë}¯Ò°È
ε
>1
ε
<1
èqxytvr djkqxquvxzzqwjrvtq·nxrvmvxn·ntq¹vzknsq·qtërx|ntzéqxqznzj
rºãËË ºº m ¹¯ÒãºÎËÓÒÒ  ¹º}ÈÏÈÓº º m ¹ºã«¯Óº® °Ò°ËäË}ºº¯ÒÓÈ ªã
ãÒ¹°ҹ˯ºãÈÒ¹È¯ÈºãÈÏÈÈ°«¯ÈmÓËÓÒËämÒÈ
ρ
εϕ
( cos )10
−−=
p

Ë
ε
>0Òp>0
 ÓË}ºº¯©Ë }ºÓ°ÈÓ© ÓÈÏ©mÈËä©Ë ërx|ntzéqxqznzvuÒ{vrjstu
wjéjunzévu°ººmË°mËÓÓºÒºã«¯ÈÏãÒÓ©²ÏÓÈËÓÒ®ª}°ËÓ¯Ò°ÒËÈ¹¯ÒÁÒ}
°Ò¯ºmÈÓÓºä
p
¹ºãÈ°« ¯ÈÏãÒÓ©Ë Ò¹© }¯Òm©² ªããÒ¹°© ¹¯Ò
01
<<
ε
 ¹È¯Èºã©
¹¯Ò
ε
=
1
Òҹ˯ºã©¹¯Ò
ε
> 1
vººmË°mÒË°ãÈÒ¹º}ÈÏÈÓ©ÓÈ¯Ò°Ó}Ë
p°ãÒ º°ãÈÒº¯ÈÓÒËÓÒ« ÓÈ ¹È¯ÈäË¯© ¯ÈϯËÒm Òä ¹¯ÒÓÒäÈ m °ä©°ãË
¹¯ËËãÓºº¹Ë¯Ë²ºÈ}È}ÓãËm©ËÈ}Ò˰}ºÓËÓººãÒË¹ºãºÎÒËãÓ©ËÏÓÈË
ÓÒ«ºäºÎÓº¹ºãÒÒ¯ÒË©ãÒÓÒ®mº¯ºº¹º¯«}È}ÈÏÈÓÓ©ËmÁº¯äãÒ
¯ºm}Ë˺¯Ëä©sȹ¯Òä˯¹¯Ò
ε
=0
Ò
p
0
ä©ÒäËËäº}¯ÎÓº°¹¯Ò
ε
0
Ò
p=0

ÒϺãÒ¯ºmÈÓÓº}È¹¯Ò
p=0
Ò
εϕ
cos = 1
¹È¯¹Ë¯Ë°Ë}ÈÒ²°«¹¯«ä©²
cÈÏãÒÓ©Ë©}¯Òm©²mº¯ºº¹º¯«}Èm}ãÈ«Òm©¯ºÎËÓÓ©Ë°ãÈÒäº
©¹ºãËÓ©°ËËÓÒËä}¯ºmº®}ºÓÒ˰}º®¹ºm˯²Óº°Ò¹ãº°}º°ºÒãã
°¯Ò¯Ë¯Ò°Óº}
cÈÏËã 
sËãÒÓˮө˺­žË}ˆ©Óȹ㺰}º°ˆÒÒm¹¯º°ˆ¯ÈÓ°ˆmË



             
             
                       iÒ¯Ë}ˆ¯Ò°È




                                                    )


                                                                                              ε<1


                                 ε>1                                                                             ε =1
                                                                                         
         
         
èqxytvr djkqxquvxzzqwjrvtq·nxrvmvxn·ntq¹vzknsq·qt€ërx|ntzéqxqznzj
         
         
         
         rºãËË ˆºº m ¹¯ÒãºÎËÓÒÒ  ¹º}ÈÏÈÓº ˆº m ¹ºã«¯Óº® °Ò°ˆËäË }ºº¯ÒÓȈ ªã
ãÒ¹°ҹ˯­ºãÈҹȯȭºãÈÏÈÈ ˆ°«‚¯ÈmÓËÓÒËämÒÈ
         
                                     ρ (1 − ε cos ϕ ) − p = 0 
                                                  
Ë ε >0 Ò p>0  ÓË}ºˆº¯©Ë }ºÓ°ˆÈӈ© ÓÈÏ©mÈËä©Ë ërx|ntzéqxqznzvu Ò {vrjst€u
wjéjunzévu°ººˆmˈ°ˆmËÓÓºÒˆºã«¯ÈÏãÒÓ©²ÏÓÈËÓÒ®ª}°Ëӈ¯Ò°ÒˆËˆÈ¹¯ÒÁÒ}
°Ò¯ºmÈÓÓºä p ¹ºã‚È ˆ°« ¯ÈÏãÒÓ©Ë ˆÒ¹© }¯Òm©² ªããÒ¹°© ¹¯Ò 0 < ε < 1  ¹È¯È­ºã©
¹¯Ò ε = 1 Òҹ˯­ºã©¹¯Òε > 1vººˆmˈ°ˆm‚ Ò˰ã‚ÈÒ¹º}ÈÏÈÓ©ÓȯҰ‚Ó}Ë
         
         
         p°ãÒ º°ãȭ҈  º¯ÈÓÒËÓÒ« ÓÈ ¹È¯Èäˈ¯© ¯ÈÏ¯Ë Òm Òä ¹¯ÒÓÒäȈ  m °ä©°ãË
¹¯ËËã Óºº¹Ë¯Ë²ºÈ }È}ӂãËm©ËˆÈ}ҭ˰}ºÓËÓº­ºã Ò˹ºãºÎ҈Ëã Ó©ËÏÓÈË
ÓÒ«ˆºäºÎÓº¹ºã‚҈ Ò¯‚ÒËmÒ©ãÒÓÒ®mˆº¯ºº¹º¯«}È‚}ÈÏÈÓÓ©ËmÁº¯ä‚ãÒ
¯ºm}ˈ˺¯Ëä©sȹ¯Òä˯¹¯Òε=0Òp≠0ä©ÒäËËäº}¯‚ÎÓº°ˆ ¹¯Òε 0Òp=0
ÒϺãÒ¯ºmÈÓӂ ˆº}‚ȹ¯Òp=0Ò ε cos ϕ = 1 ¹È¯‚¹Ë¯Ë°Ë}È Ò²°«¹¯«ä©²
         
         
         cÈÏãÒÓ©ËmÒ©}¯Òm©²mˆº¯ºº¹º¯«}Èm}ã È«Òm©¯ºÎËÓө˰ã‚ÈÒäº
‚ˆ­©ˆ ¹ºã‚ËÓ©°ËËÓÒËä}¯‚ºmº®}ºÓÒ˰}º®¹ºm˯²Óº°ˆÒ¹ãº°}º°ˆ ˆºÒãã 
°ˆ¯Ò¯‚ˈ¯Ò°‚Óº}