Аналитическая геометрия и линейная алгебра. Умнов А.Е. - 93 стр.

UptoLike

Составители: 

Рубрика: 

cÈÏËã


sËãÒÓˮөËºË}©ÓÈ¹ãº°}º°ÒÒm¹¯º°¯ÈÓ°mË
Íyxzn
utvnxzkj
Òv·rqwé¹unqwsvxrvxzq
gqsqtléqrvtyx
+
+
=−
x
a
y
b
z
b
2
2
2
2
2
2
1
+
=−
x
a
y
b
z
2
2
2
2
1;
=−
′′
xa yz
22
;,
Êovsqévkjttj¹zv·rj
+
+
=
x
a
y
b
z
b
2
2
2
2
2
2
0
Íé¹uj¹
+
=∀
x
a
y
b
z
2
2
2
2
0;
Íjéjwnénxnrjíq}x¹wsvx
rvxznp
=∀
x
a
y
b
z
2
2
2
2
0;
Íjéjwjéjssnst}qsqxvk
wjljíq}wsvxrvxznp
=xa
22

=∀
′′
xyz
2
0; ,
êssqwzq·nxrqp|qsqtlé
+
=∀
x
a
y
b
z
2
2
2
2
1;
qwnéivsq·nxrqp|qsqtlé
=∀
x
a
y
b
z
2
2
2
2
1;
Íjéjivsq·nxrqp|qsqtlé
=
ypxz
2
2;
Çvtyx
+
=
x
a
y
b
z
c
2
2
2
2
2
2
0
êssqwxvql
sËm©¯ºÎËÓÓ©Ë
¹ºm˯²Óº°Ò
Íjéjivsvql
qwnéivsvql
+
+
=
x
a
y
b
z
c
2
2
2
2
2
2
1
êssqwzq·nxrqpwjéjivsvql
+
=
x
a
y
b
z
2
2
2
2
2
qwnéivsq·nxrqpwjéjivsvql
=
x
a
y
b
z
2
2
2
2
2
Ìltvwvsvxztpmqwnéivsvql
+
=
x
a
y
b
z
c
2
2
2
2
2
2
1
bkywvsvxztpmqwnéivsvql
=
x
a
y
b
z
c
2
2
2
2
2
2
1
¹¯ÒËä
abcp>>> >
000 0,,,

iº}ÈÏÈËã°mº
tº«mºÏäºÎÓºº}ÈÏÈ°˰mºmÈÓÒËº¯ºÓº¯äÒ¯ºmÈÓÓº®°Ò°Ëä©}ºº¯ÒÓÈ°
¯ËËä©äÒ °mº®°mÈäÒ Ò°¹ºãÏ« ¹º²ºÈÓÈãºÒÓ©® Ò°¹ºãϺmÈÓÓºä ¹¯Ò
º}ÈÏÈËã°mË ˺¯Ëä©  ¹¯Ë°Èmã«Ë°« Ëã˰ºº¯ÈÏÓ©ä ¯È°°äº¯Ë ªº
mº¹¯º°m¯Èä}Ȳ˺¯ÒÒËm}ãÒºm©²¹¯º°¯ÈÓ°mËm˯ÎËÓÒË˺¯Ëä©
Ó˹º°¯Ë°mËÓÓº m©Ë}ÈË ÒÏ ºãËË º˺ °ãÈ« ¯È°°äº¯ËÓÓºº m ¹ Ò
¹
cÈÏËã 
sËãÒÓˮө˺­žË}ˆ©Óȹ㺰}º°ˆÒÒm¹¯º°ˆ¯ÈÓ°ˆmË




                  Íyxz€n
                                  
                                                                                                                                   
                 utv nxzkj                              Òv·rqwé¹u€nqwsvxrvxzq                               gqsqtlé€qrvtyx€
                     
                                                                                                                                  

        x′   2
              y′   z′     2                2             Êovsqévkjttj¹zv·rj                                 êssqwzq·nxrqp|qsqtlé
          2 +   2 + 2 = −1                                    x′2        y′2              z′2                     x′2        y′2
        a     b    b                                                 +                +          = 0                     +             = 1 ; ∀z ′ 
                                  
                                                                a2           b2            b2                      a2         b2
       x′2           y′2                                                                                                           
                 +                = −1; ∀z ′                        x′   2
                                                                                      y′   2                  ­qwnéivsq·nxrqp|qsqtlé
       a2                b2                              Íé¹uj¹              +                = 0 ; ∀z ′ 
                                  
                                                                     a   2
                                                                                      b2                           x′2        y′2
        x ′ 2 = − a 2 ; ∀y ′, z ′                                                                                       −             = 1 ; ∀z ′ 
                                                                                                                   a2         b2
                                                        Íjéjwnénxnrjíq}x¹wsvx                                                  
                                                         rvxznp                                              Íjéjivsq·nxrqp|qsqtlé
                                                               x′2       y′2                                           y ′ 2 = 2 px ′ ; ∀z ′ 
                                                                     −                = 0 ; ∀z ′                                   
                                                               a2         b2                                  
                                                                                  
                                                                                                              Çvtyx
                                                         Íjéjwjéjssnst€}qsqxvk
                                                         wjljíq}wsvxrvxznp                                      x′2        y′2           z′2
                                                                                                                          +             −         = 0
                                                          x ′ 2 = a 2  x ′ 2 = 0 ; ∀y ′ , z ′                  a2         b2            c2
                 
                                                                                 
                                                                                                                              
                      
                                                              sËm©¯ºÎËÓÓ©Ë                                                  
                                                              ¹ºm˯²Óº°ˆÒ                                                   
                                                                                  

                 êssqwxvql€                                        Íjéjivsvql€                                        ­qwnéivsvql€
                      
                                                                                                                                  
                                                        êssqwzq·nxrqpwjéjivsvql                            Ìltvwvsvxzt€pmqwnéivsvql
         x′2             y′2              z′2                     x′2         y′2                                  x′2        y′2           z′2
             2       +        2       +       2   = 1                    +                = 2z ′                        +             −         = 1
         a               b                c                         a2         b2                                  a2         b2            c2
                                                                                                                                  
                                                         ­qwnéivsq·nxrqpwjéjivsvql bkywvsvxzt€pmqwnéivsvql
                                                                  x′2          y′2                                 x′2        y′2           z′2
                                                                          −                = 2z ′                        −             −         = 1
                                                                    a2         b2                                  a2         b2            c2
                                                                                  
                 
                 ¹¯ÒËä a > 0 , b > 0 ,                   c>0,          p > 0 
                 
     iº}ÈÏȈËã°ˆmº
      
        tºˆ«mºÏäºÎÓºº}ÈÏȈ °‚Ë°ˆmºmÈÓÒ˺¯ˆºÓº¯äÒ¯ºmÈÓÓº®°Ò°ˆËä©}ºº¯ÒÓȈ°
        ˆ¯Ë­‚Ëä©äÒ °mº®°ˆmÈäÒ Ò°¹ºã ς« ¹º²º ÈÓÈãºÒÓ©® Ò°¹ºã ϺmÈÓÓºä‚ ¹¯Ò
        º}ÈÏȈËã °ˆmË ˆËº¯Ëä©  ¹¯Ë°ˆÈmã«Ëˆ°« Ëã˰ºº­¯ÈÏÓ©ä ¯È°°äºˆ¯Ëˆ  ªˆºˆ
        mº¹¯º°m¯Èä}ȲˆËº¯ÒÒËm}ãÒºm©²¹¯º°ˆ¯ÈÓ°ˆmË‚ˆm˯ÎËÓÒˈ˺¯Ëä©
        Ó˹º°¯Ë°ˆmËÓÓº m©ˆË}Èˈ ÒÏ ­ºãËË º­Ëº °ã‚È« ¯È°°äºˆ¯ËÓÓºº m ¹ Ò
        ¹