Аналитическая геометрия и линейная алгебра. Умнов А.Е. - 91 стр.

UptoLike

Составители: 

Рубрика: 

cÈÏËã


sËãÒÓˮөËºË}©ÓÈ¹ãº°}º°ÒÒm¹¯º°¯ÈÓ°mË
¯Ò
D
=
0
¹ºãÈËä
Cy
E
C
E
C
F
(
)
+=
2
2

º˰ºÓºÒÏ¯Ë²¯ÈmÓËÓÒ®
=
=
=−
ya y y a
22 2 2 2
0;;

p°ãÒÎË
D
0
º¯ÈmÓËÓÒËäºÎÓº¹¯Òm˰Ò}mÒ
(
)
((
))
y
E
C
D
C
x
D
E
C
F
+=
2
2
21
2
Ò È}Òä º¯ÈϺä ãÒº
=
ypx
2
2
 ãÒº
=−
ypx
2
2
 Ë
p
!
0
 ˯m©® ÒÏ ªÒ²
°ãÈËm}ÈÏÈÓmÁº¯äãÒ¯ºm}Ë˺¯Ëä©Èmº¯º®°mºÒ°«}¹Ë¯mºäÏÈäËÓº®
}ºº¯ÒÓÈ
=−
=
=
=−
=
→→
→→
→→
ee
ee
OO o
xx
yy
11
22
;

˺¯ËäÈº}ÈÏÈÓÈ
~ÈäËÈÓÒ«
°{˺¯ËäË©ãº¹º}ÈÏÈÓºº¹º¯«º}ÈãË¯ÈÒ˰}º®ãÒÓÒÒm
ºäÒ°ãËÒã«¯È°°äÈ¯ÒmÈË䩲m˺¯ËäË°ãÈËmÓËäËÓ«
Ë°«¹¯ÒÏÈäËÓË°Ò°Ëä©}ºº¯ÒÓÈ
jÏ º}ÈÏÈËã°mÈ˺¯Ëä©È}ÎË°ãËË º ¹ºmº¯º Ò ¹È¯Èã
ãËãÓ©®¹Ë¯ËÓº°º¯ºÓº¯äÒ¯ºmÈÓÓº®°Ò°Ëä©}ºº¯ÒÓÈÓËº¹°
}ÈË ¹Ë¯ËäËËÓÒ« ¯ÈmÓËÓÒ« ãÒÓÒÒ mº¯ºº ¹º¯«}È ÒÏ ºÓº®
°¯º}ÒÈãÒ©˺¯Ëä©m¯
°rºãËË ºº Ë ¹º}ÈÏÈÓº ˺¯ËäÈ  º ÓÒ}È}º® ÏÈäËÓº®
°Ò°Ëä© }ºº¯ÒÓÈ ÓËãÏ« ¹Ë¯Ëä˰ÒãÒÓÒ mº¯ºº ¹º¯«}È
ÓȲº«°«mºÓº®ÒÏ}ãËº}ÈãÒ©m°ãºmÒÒ˺¯Ëä©m
¯
°ÒÓÒÒ mº¯ºº ¹º¯«}È ã« }ºº¯©²
∆>
0
¹¯ÒÓ«º ºÓº°Ò}ës
sqwzq·nxrvuy zqwy ãÒÓÒÒ °
∆<
0
}mqwnéivsq·nxrvuy zqwy È
ãÒÓÒÒ°
∆=0
}wjéjivsq·nxrvuyzqwy
cÈÏËã 
sËãÒÓˮө˺­žË}ˆ©Óȹ㺰}º°ˆÒÒm¹¯º°ˆ¯ÈÓ°ˆmË



           ¯Ò D = 0 ¹ºã‚ÈËä
           
                                                                     E                    E2
                                                                C y+
                                                                     C (       )   2
                                                                                        =
                                                                                          C
                                                                                             − F 
           
           ˆº˰ˆ ºÓºÒψ¯Ë²‚¯ÈmÓËÓÒ® y ′ 2 = a 2 ; y ′ 2 = 0 ; y ′ 2 = − a 2 
           
           
           p°ãÒÎË D ≠ 0 ˆº‚¯ÈmÓËÓÒËäºÎÓº¹¯Òm˰ˆÒ}mÒ‚
           
                                                           E                2D     1               E2
                                                  (   y+
                                                           C   )   2
                                                                       =−
                                                                             C  (
                                                                               x−
                                                                                  2D           (   C
                                                                                                      −F      )) 
           
          Ò ˆÈ}Òä º­¯ÈϺä ãÒ­º y ′ 2 = 2 px ′  ãÒ­º y ′ 2 = −2 px ′  Ë p!0 Ë¯m©® ÒÏ ªˆÒ²
          °ã‚ÈËm‚}ÈÏÈÓmÁº¯ä‚ãÒ¯ºm}ˈ˺¯Ëä©Èmˆº¯º®°mº҈°«}¹Ë¯mºä‚ÏÈäËÓº®
          }ºº¯ÒÓȈ
          
                                                                →        →
                                                                 e1′ = − e1
                                                                →        →  x = − x ′
                                                                 e2′ = e2 ;           
                                                                 →       →   y = y′
                                                                OO ′ = o
                                                                
                                                                                    
      ‘˺¯ËäȺ}ÈÏÈÓÈ
               
               
               
               
    ~ÈäËÈÓÒ«          °{ˆËº¯ËäË­©ãº¹º}ÈÏÈÓºˆº¹º¯«º}ÈãË­¯ÈÒ˰}º®ãÒÓÒÒm
                               ˆºäÒ°ãËÒ㫯Ȱ°äȈ¯ÒmÈË䩲mˆËº¯Ëä˰ã‚ÈËmÓËäËÓ«
                               ˈ°«¹¯ÒÏÈäËÓ˰ҰˆËä©}ºº¯ÒÓȈ
                         
                         
                               jÏ º}ÈÏȈËã °ˆmÈ ˆËº¯Ëä© ˆÈ}ÎË °ãË‚ˈ ˆº ¹ºmº¯ºˆ Ò ¹È¯Èã
                               ãËã Ó©®¹Ë¯ËÓº°º¯ˆºÓº¯äÒ¯ºmÈÓÓº®°Ò°ˆËä©}ºº¯ÒÓȈÓ˺¹‚°
                               }Èˈ ¹Ë¯Ëä˝ËÓÒ« ‚¯ÈmÓËÓÒ« ãÒÓÒÒ mˆº¯ºº ¹º¯«}È ÒÏ ºÓº®
                               °ˆ¯º}҈ȭãÒ©ˆËº¯Ëä©m¯‚‚ 
                         
                         
                           °rºãËË ˆºº ­‚ˈ ¹º}ÈÏÈÓº ˆËº¯ËäÈ   ˆº ÓÒ}È}º® ÏÈäËÓº®
                                °Ò°ˆËä© }ºº¯ÒÓȈ ÓËã Ï« ¹Ë¯Ëä˰ˆÒˆ  ãÒÓÒ  mˆº¯ºº ¹º¯«}È
                                ÓȲº«‚ °«mºÓº®ÒÏ}ãˈº}ˆÈ­ãÒ©m‚°ãºmÒ҈˺¯Ëä©m
                                ¯‚‚ 
                           
                           
                           °ÒÓÒÒ mˆº¯ºº ¹º¯«}È ã« }ºˆº¯©² ∆ > 0  ¹¯ÒÓ«ˆº ºˆÓº°Òˆ  } ës
                                sqwzq·nxrvuy zqwy ãÒÓÒÒ ° ∆ < 0   } mqwnéivsq·nxrvuy zqwy È
                                ãÒÓÒÒ° ∆ = 0 }wjéjivsq·nxrvuyzqwy