Аналитическая геометрия и линейная алгебра. Умнов А.Е. - 75 стр.

UptoLike

Составители: 

Рубрика: 

cÈÏ Ëã
79
¯«äÈ«Ò¹ãº°}º°

|¯ººÓÈãÓº° ¹¯«äº®
(,)
(,)
nr d
nr d
11
22
→→
→→
=
=
¹ãº°}º°Ò
(,)nr d
→→
=
° v˰m
λµ λ µ
;;
+>
0
È}ÒË º
nn n
→→→
=+
λµ
12

°
[,[ , ]]
nnn o
→→
=
12
Òjisq|j|Óº°ÒËãÓÈ«º¯ÒËÓÈÒ«¹¯«äº®Ò¹ãº°}º°Òm¹¯º°¯ÈÓ°mË
|äËÒä ºmÈãÒȲ °º²¯ÈÓËÓ©mmËËÓÓ©Ë ¯ÈÓËËººÏÓÈËÓÒ«
Òº¯ÈÓÒËÓÒ«
¯Ò¯ËËÓÒÒ˺äË¯Ò˰}Ò² ÏÈÈäËºÈäÒ mË}º¯Óº®ÈãË¯©È}ÎË mÈÎÓº
äË¹Ë¯ËmºÒªÒ¹¯Ë°ÈmãËÓÒ«ÒÏºÓº®ª}mÒmÈãËÓÓº®Áº¯ä©m¯

sÈ®Ëä Óȹ¯Òä˯ ã« ¹¯«äº® ÏÈÈÓÓº® m ¹¯º°¯ÈÓ°mË ¹Ë¯Ë°ËËÓÒËä m²
Ó˹ȯÈããËãÓ©² ¹ãº°}º°Ë®
(,)
(,)
nr d
nr d
11
22
→→
→→
=
=
 ¯ÈmÓËÓÒË m ¹È¯ÈäË¯Ò˰}ºä Ë
rr a
→→
=+
0
τ

sË¯Óº ËÒ°« ºm}È˰mË Óȹ¯Èmã«˺ mË}º¯È ÈÓÓº® ¹¯«äº®
äºÎÓºmÏ«
ann
→→
=
[,]
12
È¯ÈÒ°mË}º¯º}Ò
r
0
äºÎË©ÓÈ®ËÓ}È}ÓË}ºº¯È«
ãÒÓË®ÓÈ«}ºäÒÓÈÒ«mË}º¯ºm
n
1
Ò
n
2
iË®°mÒËãÓº¹°
rnn
012
→→
=+
ξ
η
ºÈÒÏ
°Ò°Ëä©ãÒÓˮө²¯ÈmÓËÓÒ®
(,)
(,)
nr d
nr d
10 1
20 2
→→
→→
=
=
ÓȲºÒä
ξ
ξ
=
Ò
η
η
=
Ë
∆=
→→
→→
det
(,)(, )
(,)(,)
nn nn
nn nn
11 12
21 22

ξ
=
→→
→→
det
(, )
(,)
dnn
dnn
112
222
Ò
η
=
→→
→→
det
(,)
(,)
nn d
nn d
11 1
21 2
°ä ˺¯Ëä  º}ÈÎÒË °È亰º«ËãÓº º ÒÏ °ãºmÒ« Ó Ë}ºããÒÓËȯӺ°Ò Óº¯
äÈãÓ©²mË}º¯ºm
n
1
Ò
n
2
°ãËË
∆≠
0

kÓÈãºÒÓºäºÎË©m©¹ºãÓËÓÒº¯ÈÓ©®¹Ë¯Ë²º

vãË ËÒäËmmÒºÒ°¹ºãϺmÈÓÒË¯ÈÏãÒ Ó©²mË}º¯Ó©²¹¯Ë°ÈmãËÓÒ®ºÓººÒºÎË
˺äË¯Ò˰}ºº°ãºmÒ«äºÎË¹¯ÒmºÒ}¯ÈÏãÒÓ©äÓº˰˰mËÓÓºª}mÒmÈãËÓÓ©äÁº¯
äÈäÏȹҰÒ¯ËËÓÒ«väÓȹ¯Òä˯ÏÈÈ
c È Ï  Ë ã                                                      79
¯«äȫҹ㺰}º°ˆ 



    |¯ˆººÓÈã Óº°ˆ                                     ¹¯«äº® ° v‚Ë°ˆm‚ ˆ                                          λ;µ ;                  λ + µ > 0  ˆÈ}ÒË ˆº
         → →
                                                                                      →            →            →
     (n1 , r ) = d 1                                                                  n = λ n1 + µ n2 
     → →                                       ¹ãº°}º°ˆÒ
    (n 2 , r ) = d 2                                                      
                                                                                      →       →      →            →
        → →                                                                 °[ n ,[ n1 , n2 ]] = o 
    ( n, r ) = d 
                                                                            
    
       
       
     Òjisq|j|ˆÓº°ÒˆËã ÓÈ«º¯ÒËӈÈÒ«¹¯«äº®Ò¹ãº°}º°ˆÒm¹¯º°ˆ¯ÈÓ°ˆmË
       
       
       
       |ˆäˈÒä ˆº m ˆÈ­ãÒȲ  °º²¯ÈÓËÓ© mmËËÓÓ©Ë ¯ÈÓËË º­ºÏÓÈËÓÒ«
Òº¯ÈÓÒËÓÒ«
       
       
       
       ¯Ò ¯Ë ËÓÒÒ ˺äˈ¯Ò˰}Ò² ÏÈÈ äˈºÈäÒ mË}ˆº¯Óº® ÈãË­¯© ˆÈ}ÎË mÈÎÓº
‚äˈ ¹Ë¯Ëmº҈ ªˆÒ¹¯Ë°ˆÈmãËÓÒ«ÒϺӺ®ª}mÒmÈãËӈӺ®Áº¯ä©m¯‚‚  
       
       sÈ®Ëä Óȹ¯Òä˯ ã« ¹¯«äº® ÏÈÈÓÓº® m ¹¯º°ˆ¯ÈÓ°ˆmË ¹Ë¯Ë°ËËÓÒËä m‚²
                             → →
                             (n , r ) = d 1
Ó˹ȯÈããËã Ó©² ¹ãº°}º°ˆË®  →1 →              ‚¯ÈmÓËÓÒË m ¹È¯Èäˈ¯Ò˰}ºä mÒË
                            (n 2 , r ) = d 2
→        →            →
 r = r0 + τ a 
                  
                  sˈ¯‚Óº ‚­Ë҈ °« ˆº m }È˰ˆmË Óȹ¯Èmã« Ëº mË}ˆº¯È ÈÓÓº® ¹¯«äº®
                                →           →       →                                                                  →
äºÎÓºmÏ«ˆ  a = [ n1 , n2 ] ȯÈ҂°mË}ˆº¯ˆº}Ò r0 äºÎˈ­©ˆ ÓÈ®ËÓ}È}ÓË}ºˆº¯È«
                                                                             →             →                                                            →            →             →
ãÒÓË®ÓÈ«}ºä­ÒÓÈÒ«mË}ˆº¯ºm n1 Ò n 2 iË®°ˆm҈Ëã Óº¹‚°ˆ  r0 = ξ n1 + η n 2 ˆºÈÒÏ
                             → →                             ∆ξ         ∆η
                             (n , r ) = d 1
°Ò°ˆËä©ãÒÓˮө²‚¯ÈmÓËÓÒ®  →1 →0            ÓȲºÒä ξ =    Ò η =    Ë
                            (n2 , r0 ) = d 2                ∆          ∆
                  
                                        → →                 →      →                                                →      →                                        → →
                                     (n1 , n1 )          (n1 , n2 )                                    d1         (n1 , n2 )                                      (n1 , n1 )          d1
                   ∆ = det              →       →           →      →          ∆ ξ = det                          →      →         Ò ∆ η = det                  →      →                   
                                     (n2 , n1 ) (n2 , n2 )                                             d2        (n2 , n2 )                                      (n2 , n1 ) d 2
         
 °ä ˆËº¯Ëä‚   º}ÈÎ҈Ë °È亰ˆº«ˆËã Óº ˆº ÒÏ ‚°ãºmÒ« ÓË}ºããÒÓËȯӺ°ˆÒ Óº¯
                                             →            →
äÈã Ó©²mË}ˆº¯ºm n1 Ò n 2 °ãË‚ˈ ∆ ≠ 0 
           
           kÓÈãºÒÓºäºÎˈ­©ˆ m©¹ºãÓËÓÒº­¯ÈˆÓ©®¹Ë¯Ë²º

 vãË‚ˈÒäˈ mmÒ‚ˆºÒ°¹ºã ϺmÈÓÒ˯ÈÏãÒÓ©²mË}ˆº¯Ó©²¹¯Ë°ˆÈmãËÓÒ®ºÓººÒˆºÎË
˺äˈ¯Ò˰}ºº‚°ãºmÒ«äºÎˈ¹¯Òmº҈ }¯ÈÏãÒÓ©äÓº˰ˆË°ˆmËÓÓºª}mÒmÈãËӈөäÁº¯
äÈäÏȹҰÒ¯Ë ËÓÒ« väÓȹ¯Òä˯ÏÈÈ‚