Аналитическая геометрия и линейная алгебра. Умнов А.Е. - 68 стр.

UptoLike

Составители: 

Рубрика: 


Ë} ÒÒ}ÈÁË ¯©m©° Ë®äÈËäÈÒ}Òlnj
ÙkÓÈãÒÒ˰}È«˺äË¯Ò«ÒãÒÓË®ÓÈ«ÈãË¯Èµ
äÓºmkp
|¹¯ËËãËÓÒË

Íy·rvu wsvxrvxznp m ¹¯º°¯ÈÓ°mË ÓÈÏ©mÈË°« °ºmº}¹Óº° m°Ë²
¹ãº°}º°Ë®¹¯º²º«Ò²˯ËÏÈÓÓ¹¯«ä
|¹¯ËËãËÓÒË

Ïéjktntqnu wy·rj wsvxrvxznp¹¯º²º«Ò² ˯ËÏ ¹¯«ä º¹¯ËËã«Ë
ä¹Ë¯Ë°ËËÓÒËä¹È¯©Ó˹ȯÈããËãÓ©²¹ãº°}º°Ë®

Ax By Cz D A B C
1111 111
00
+++= ++>
,

Ò

Ax By Cz D A B C
2222 222
00
+++= ++>
,

ÓÈÏ©mÈË°«¯ÈmÓËÓÒËmÒÈ
αβ αβ
()( ),
Ax By Cz D Ax B y Cz D
1111 2222
00
++++ +++= +>

|¹¯ËËãËÓÒË

fk¹orvp wsvxrvxznp m ¹¯º°¯ÈÓ°mË ÓÈÏ©mÈË°« °ºmº}¹Óº° m°Ë²
¹ãº°}º°Ë®¹¯º²º«Ò²˯ËÏÈÓÓº}
|¹¯ËËãËÓÒË

p°ãÒº}È
P
¹¯ÒÓÈãËÎÈÈ«ºÓºm¯ËäËÓÓº¯Ëä¹ãº°}º°«ä

Ax By Cz D A B C
1111 111
00
+++= ++>
,

Ax By Cz D A B C
2222 222
00
+++= ++>
,

Ò

Ax By Cz D A B C
3333 333
00
+++= ++>
,

ËÒÓ°mËÓÓÈ«º¯ÈmÓËÓÒËmÒÈ

αβ
γ
αβ
γ
()( )
(), .
Ax By Cz D Ax B y Cz D
Ax By Cz D
1111 2222
3333
00
++++ ++++
++++= ++>
ÓÈÏ©mÈË°«yéjktntqnuxk¹orqwsvxrvxznp¹¯º²º«Ò²˯ËÏº}
P

iã« ¹}È Ò °m«Ï}Ò ¹ 㺰}º°Ë® m ¹¯º°¯ÈÓ°mË °¹¯ÈmËãÒm© ˺¯Ëä©
ÈÓÈãºÒÓ©Ë˺¯ËäËã«¹}È¹¯«ä©²ÓÈ¹ãº°}º°Ò
nº¯ä©ÏÈÈÓÒ«¹¯«äº®m¹¯º°¯ÈÓ°mË
v˰m ¯ÈÏãÒÓ©Ë °¹º°º© ÏÈÈÓÒ« ¹¯«äº® m ¹¯º°¯ÈÓ°mË m ÓË}ºº¯º®
Ë}ȯºmº®°Ò°ËäË}ºº¯ÒÓÈ
{, , , }
Og g g
123
→→

 Ë }  Ò Ò    } È Á Ë  ¯ ©   m © °  Ë ®   ä È ˆ Ë ä È ˆ Ò } Ò   l n ‘ j 
ÙkÓÈã҈Ò˰}È«˺äˈ¯Ò«ÒãÒÓË®ÓÈ«ÈãË­¯ÈµäÓºmkp



  |¹¯ËËãËÓÒË Íy·rvu wsvxrvxznp m ¹¯º°ˆ¯ÈÓ°ˆmË ÓÈÏ©mÈˈ°« °ºmº}‚¹Óº°ˆ  m°Ë²
              ¹ãº°}º°ˆË®¹¯º²º«Ò²˯ËÏÈÓӂ ¹¯«ä‚ 


    |¹¯ËËãËÓÒË        Ïéjktntqnu wy·rj wsvxrvxznp ¹¯º²º«Ò² ˯ËÏ ¹¯«ä‚  º¹¯ËËã«Ë
                  ä‚ ¹Ë¯Ë°ËËÓÒËä¹È¯©Ó˹ȯÈããËã Ó©²¹ãº°}º°ˆË®
                         
                          A1 x + B1 y + C1 z + D1 = 0 ,                A1 + B1 + C1 > 0 Ò
                         
                          A2 x + B2 y + C2 z + D2 = 0 ,                 A2 + B2 + C2 > 0 
                         
                         ÓÈÏ©mÈˈ°«‚¯ÈmÓËÓÒËmÒÈ
                         
                          α ( A1 x + B1 y + C1 z + D1 ) + β ( A2 x + B2 y + C2 z + D2 ) = 0 ,                        α + β > 0 


    |¹¯ËËãËÓÒË        fk¹orvp wsvxrvxznp m ¹¯º°ˆ¯ÈÓ°ˆmË ÓÈÏ©mÈˈ°« °ºmº}‚¹Óº°ˆ  m°Ë²
                  ¹ãº°}º°ˆË®¹¯º²º«Ò²˯ËÏÈÓӂ ˆº}‚


    |¹¯ËËãËÓÒË        p°ãÒˆº}ÈP¹¯ÒÓÈãËÎȝȫºÓºm¯ËäËÓÓºˆ¯Ëä¹ãº°}º°ˆ«ä
                  
                          A1 x + B1 y + C1 z + D1 = 0 ,                   A1 + B1 + C1 > 0 
                          A2 x + B2 y + C2 z + D2 = 0 ,                    A2 + B2 + C2 > 0 Ò
                          A3 x + B3 y + C3 z + D3 = 0 ,                    A3 + B3 + C3 > 0 
                         
                         ËÒÓ°ˆmËÓÓÈ«ˆº‚¯ÈmÓËÓÒËmÒÈ
                         
                                         α ( A1 x + B1 y + C1 z + D1 ) + β ( A2 x + B2 y + C2 z + D2 ) +
                                                                                                                
                                         + γ ( A3 x + B3 y + C3 z + D3 ) = 0 ,                α + β + γ >0 .
                         
                         ÓÈÏ©mÈˈ°«yéjktntqnuxk¹orqwsvxrvxznp¹¯º²º«Ò²˯Ëψº}‚P

       iã« ¹‚}È Ò °m«Ï}Ò ¹ãº°}º°ˆË® m ¹¯º°ˆ¯ÈÓ°ˆmË °¹¯ÈmËãÒm© ˆËº¯Ëä©
ÈÓÈãºÒөˈ˺¯ËäË㫹‚}ȹ¯«ä©²Óȹ㺰}º°ˆÒ
       
       
       
       
nº¯ä©ÏÈÈÓÒ«¹¯«äº®m¹¯º°ˆ¯ÈÓ°ˆmË
            
            
            
            v‚Ë°ˆm‚ ˆ ¯ÈÏãÒÓ©Ë °¹º°º­© ÏÈÈÓÒ« ¹¯«äº® m ¹¯º°ˆ¯ÈÓ°ˆmË m ÓË}ºˆº¯º®
                                                         →    →    →
Ë}ȯˆºmº®°Ò°ˆËäË}ºº¯ÒÓȈ {O, g1 , g 2 , g 3 }