Основы многоскоростной обработки сигналов - 15 стр.

UptoLike

Составители: 

Рубрика: 

13
Параметры
1
N ,
2
N ,
1
ν
и
2
ν
являются взаимозависимыми. Порядок
фильтра-демодулятора первой ступени преобразования запишем в виде
следующей функциональной зависимости от коэффициента прорежи-
вания
1
ν
[1]:
=
2
1
1
1
1
,
22
ε
ε
νβ
βν
LN , (1.3)
а порядок фильтра-демодулятора второй ступенив виде:
=
2
1
1
2
,
2
ε
ε
ν
αβ
LN
. (1.4)
Подставив (1.3) и (1.4) в выражения (1.2) с учетом тождества
ν
ν
ν
=
21
для значений порядка
11
ν
>>N , получим с достаточной сте-
пенью приближения
MfLR
квT 12
1
11
*
,
22
1
2
+
=
ε
ε
β
νν
α
νβ
; (1.5)
MLS
+
=
2
1
1
,
22
1
2
ε
ε
β
ν
α
νβ
. (1.6)
Поиск оптимального аналитического решения по критерию мини-
мума вычислительных затрат (1.5) приводит к следующему квадратич-
ному уравнению относительно искомого значения коэффициента про-
реживания
1
ν
:
04)2(2
2
1
2
1
=+
αβαβνναν
. (1.7)
Решение уравнения (1.7) в форме
β
αν
ανα
ν
)2(4
48
1
=
opt
(1.8)
позволяет выбрать квазиоптимальное целочисленное значение коэф-
фициента прореживания
1
ν
, одновременно отвечающее ограничению:
2
/
ν
ν
целое число.
Используя полученные выражения (1.1), (1.5), (1.6) и (1.8), произве-
дем оценку затрат на реализацию прямой параллельной формы по-
строения
M
-канальной системы по вариантам 1 и 2 для значений па-
раметров частотной избирательности, принятых в примерах 1 — 4. Ре-
зультаты расчета представим в форме табл. 1.1 и 1.2. При решении за-
дачи синтеза системы предполагалось, что в зависимости от спек-
тральной формы представления входного сигнала (рис. 1.3) коэффици-
ент прореживания
ν
связан с числом частотных каналов
M
соотно-