Компьютерная математика: Часть 1. Теория множеств и комбинаторика. Волченская Т.В - 87 стр.

UptoLike

87
7. a)
ρ = { (5, 1), (7, 1),
(7, 2), (9, 1), (9, 2), (9, 5),
D(
ρ) = {5, 7, 9}, (ρ) = {1, 2, 5}.
8. a) M = {2, 3, 4, 5, 6};
б) R = { (2, 4), (2, 6), (2, 2),
(3, 3), (3, 6), (4, 4), (4, 6), (5, 5), (6, 6), (4, 2), (6, 3), (6, 4)};
в) R = { (4, 2), (6, 2), (2, 2),
(3, 3), (6, 3), (4, 4), (6, 4), (5, 5), (6, 6), (2, 4), (3, 6), (4, 6)}.
Упражнения 2.2
1. а) ρ = {(–3, –3),
(–3, –1), (–3, 1), (–3, 3),
(–1, –1), (–1, 1), (3, –3),
(–1, –3), (1, –3), (1, –1)}.
б)
3
1
-1
-3
-3 -1 1 3
D
3
1
–1
–3
3
1
–1
–3
D
-3
-1
1
3
        7. a) ρ = { (5, 1), (7, 1),
(7, 2), (9, 1), (9, 2), (9, 5),
D(ρ) = {5, 7, 9}, ℜ (ρ) = {1, 2, 5}.
        8. a) M = {2, 3, 4, 5, 6};
б) R = { (2, 4), (2, 6), (2, 2),
(3, 3), (3, 6), (4, 4), (4, 6), (5, 5), (6, 6), (4, 2), (6, 3), (6, 4)};
в) R = { (4, 2), (6, 2), (2, 2),
(3, 3), (6, 3), (4, 4), (6, 4), (5, 5), (6, 6), (2, 4), (3, 6), (4, 6)}.


Упражнения 2.2
      1. а) ρ = {(–3, –3),
(–3, –1), (–3, 1), (–3, 3),
(–1, –1), (–1, 1), (3, –3),
(–1, –3), (1, –3), (1, –1)}.
      б)

    ℜ
    3
    1
    -1
    -3

             -3        -1   1   3
                                        D
         D                             ℜ
     3                                 3

     1                                 1

     –1                                –1

     –3                                –3


                  -3




                                               87

                                       -1
     3

                  1