Прикладные интеллектуальные системы, основанные на мягких вычислениях. Ярушкина Н.Г. - 19 стр.

UptoLike

Составители: 

Рубрика: 

19
Нейрокомпьютер и синергетический компьютер конкуренты в органи-
зации параллельных процессов. Г. Хакен в [2] называет синергетический ком-
пьютер альтернативой нейронному пути познания когнитивных возможностей.
Характеристики синергетического компьютера следующие:
Основная гипотеза: психическая деятельность мозга протекает в соответ-
ствии с основными принципами самоорганизации.
Объект исследованийзрительное восприятие.
Синергетический компьютер модель самоорганизации мост между ней-
ронным микромиром и макроскопическим восприятием.
1.4. Аттракторные нейронные сети
Детерминированный хаосстереотип поведения многих синергетических
систем, например, игровые автоматы часто используют запланированный хаос.
Как хаос связан с синергетикой? Синергетическая система может управлять не
одним, а сразу несколькими параметрами порядка. Параметры сотрудничают,
конкурируют, один из них может доминировать, но смена доминанты может
быть хаотической. Следовательно, хаотическими являются те процессы, кото-
рые при малейшем изменении условий полностью изменяются.
Хаос обладает двумя особенностями:
чувствительность к исходным условиям;
самоподобие.
Аттракторнедостижимая точка притяжения состояния системы.
Почему аттракторные НС имеют перспективы в решении интеллектуаль-
ных задач ?
Из детерминированного и микроскопического хаоса возникает порядок.
Предъявленный сенсорам образ, организует НС и позволяет извлечь нужный
паттерн. Например, рассмотрим применение аттракторной нейронной сети в
анализе временных рядов. Необходима реконструкция аттракторов из времен-
ного ряда. В некоторый момент времени t
1
определено значение x, второе зна-
чение определяется в момент, смещенный относительно первого на T. Таким
образом, обрабатываются все точки ряда, строится траектория на плоскости
X(t
1
) , X(t
1
+T). По траектории можно проследить расположение аттрактора, т. е.
выполнить экстраполяцию. В случае хаотических аттракторов для его реконст-
рукции требуется, по меньшей мере, трехмерная система координат (а то и
большей размерности). Соответствующие новые координаты получают при
этом смещением временной оси не только T, но и 2T и т.д. Проблема выбора
смещения T не решена и определяется эмпирически.