ВУЗ:
Составители:
Рубрика:
P (x)
P (x) = x
2
+ 4x + 3, 2) P (x) = 2x
2
− 5x + 2,
3) P (x) = x
2
+ 2x + 10, 4) P (x) = x
3
− 8, P (x) = x
5
− 6x
4
+ 9x
3
6) P (x) = x
4
+ 2x
2
+ 1, 7) P (x) = x
3
− x
2
− x + 1, 8) P (x) = x
5
+ 8x
3
+ 16x,
9) P (x) = x
4
− 1, 10) P (x) = x
4
+ 4x
2
+ 3, 11) P (x) = x
4
+ 4,
12) P (x) = x
5
− 10x
3
+ 9x, 13) P (x) = x
8
− 2x
4
+ 1, 14) P (x) = x
8
− 1,
15) P (x) = x
3
−x
2
−x−2, 16) P (x) = 2x
3
−x
2
−5x +10, 17
∗
) P (x) = x
6
+64.
1
◦
. z
1
± z
2
, z
1
z
2
,
z
1
z
2
,
z
1
= 3 − 2i, z
2
= 4 + 2i.
z
1
2
◦
. x
2
+ 10x + 29 = 0.
3
◦
.
6
√
64i.
4
◦
.
x
4
− 2x
3
− 2x
2
+ 8x − 8.
5
◦
. |z| > 3, w = (1 + i)z + 4i.
1
◦
. z
1
± z
2
, z
1
z
2
,
z
1
z
2
,
z
1
= 2 − 3i, z
2
= −1 + i.
z
1
2
◦
.
2x
2
+ 4x + 3 = 0.
3
◦
.
4
√
−5 − 5i.
ÇÀÄÀ×È 20 Íàéòè êîðíè ìíîãî÷ëåíîâ P (x) è ðàçëîæèòü èõ íà ìíîæèòåëè ñ âåùåñòâåííûìè êîýôôèöèåíòàìè â âèäå (2): 1) P (x) = x2 + 4x + 3, 2) P (x) = 2x2 − 5x + 2, 3) P (x) = x2 + 2x + 10, 4) P (x) = x3 − 8, 5) P (x) = x5 − 6x4 + 9x3 , 6) P (x) = x4 + 2x2 + 1, 7) P (x) = x3 − x2 − x + 1, 8) P (x) = x5 + 8x3 + 16x, 9) P (x) = x4 − 1, 10) P (x) = x4 + 4x2 + 3, 11) P (x) = x4 + 4, 12) P (x) = x5 − 10x3 + 9x, 13) P (x) = x8 − 2x4 + 1, 14) P (x) = x8 − 1, 15) P (x) = x3 − x2 − x − 2, 16) P (x) = 2x3 − x2 − 5x + 10, 17∗ ) P (x) = x6 + 64. ÇÀÄÀÍÈß ÄËß ÏÎÄÃÎÒÎÂÊÈ Ê ÊÎÍÒÐÎËÜÍÎÉ ÐÀÁÎÒÅ ÂÀÐÈÀÍÒ 1 z1 1◦ . Íàéòè z1 ± z2 , z1 z2 , z2 , åñëè z1 = 3 − 2i, z2 = 4 + 2i. Èçîáðàçèòü íà êîìïëåêñíîé ïëîñêîñòè êîì- ïëåêñíîå ÷èñëî z1 è ñîïðÿæåííîå ñ íèì. 2◦ . Ðåøèòü óðàâíåíèå: x2 + 10x + 29 = 0. 3◦ . Èçâëå÷ü êîðåíü èç êîìïëåêñíîãî ÷èñëà, èçîáðàçèòü íà êîìïëåêñíîé √ ïëîñêîñòè ðåçóëüòàò: 6 64i. 4◦ . Íàéòè êîðíè ìíîãî÷ëåíà è ðàçëîæèòü åãî íà ìíîæèòåëè ñ âåùå- ñòâåííûìè êîýôôèöèåíòàìè: x4 − 2x3 − 2x2 + 8x − 8. 5◦ . Íàéòè îáðàç êðóãà |z| > 3, åñëè w = (1 + i)z + 4i. ÂÀÐÈÀÍÒ 2 z1 1◦ . Íàéòè z1 ± z2 , z1 z2 , z2 , åñëè z1 = 2 − 3i, z2 = −1 + i. Èçîáðàçèòü íà êîìïëåêñíîé ïëîñêîñòè êîì- ïëåêñíîå ÷èñëî z1 è ñîïðÿæåííîå ñ íèì. 2◦ . Ðåøèòü óðàâíåíèå: 2x2 + 4x + 3 = 0. 3◦ . Èçâëå÷ü êîðåíü èç êîìïëåêñíîãî ÷èñëà, èçîáðàçèòü íà êîìïëåêñíîé ïëîñêîñòè ðåçóëüòàò: √ 4 −5 − 5i. 13