Теоретические вопросы управления судном. Антонов В.А - 18 стр.

UptoLike

зависимости от относительной поступи
(λ
Р
) гребного винта и коэффициент по-
лезного действия винта.
По результатам многочисленных се-
рийных испытаний гребных винтов в
свободной воде составлены диаграммы
Тейлора, Трооста, Гауна и др. Эти диа-
граммы могут быть использованы для
определения К.П.Д. винта.
Рис.3.2.
Если бы гребной винт вращался в твёрдой среде (как болт в гайке Рис.3.3),
то за один оборот он продвинулся бы в направлении движения судна на рас-
стояние шага винта (Н). В действительности винт вращается в жидкости
(среде, не являющейся твердой опорой), поэтому за один оборот винт проходит
расстояние меньшее, чем Н.
Путь, проходимый гребным
винтом за один оборот в жидкой
среде, называется абсолютной
поступью (h
B
) или просто посту-
пью винта:
n
V
h
B
B
=
, (36)
где: V
B
скорость в аксаль-
Рис. 3.3 ном направлении (поступательная);
nчастота вращения.
Разность между шагом и абсолютной поступью называется абсолютным
скольжением винта или линейным скольжением (S) и определяется:
S = H – h
B
= H -
n
V
B
. (37)
Поступь и скольжение винта выражают в безразмерных величинах. От-
ношение абсолютной поступи винта к его диаметру называется относительной
поступью гребного винта и определяется по формуле:
λ
Р
=
В
B
В
B
nД
V
Д
h
=
. (38)
Безразмерные коэффициенты упора и момента определяются по форму-
лам:
К
1
=
;
42
В
Дn
P
ρ
К
2
=
52
В
Дn
M
ρ
; (39)
Эти коэффициенты удобны для расчёта ходкости, но неудобны для расчё-
та маневренных режимов, т.к. при n = 0 эти коэффициенты стремятся к нулю.
18
                                                 зависимости от относительной поступи
                                                 (λР) гребного винта и коэффициент по-
                                                 лезного действия винта.
                                                    По результатам многочисленных се-
                                                 рийных испытаний гребных винтов в
                                                 свободной воде составлены диаграммы
                                                 Тейлора, Трооста, Гауна и др. Эти диа-
                                                 граммы могут быть использованы для
                                                 определения К.П.Д. винта.



            Рис.3.2.
   Если бы гребной винт вращался в твёрдой среде (как болт в гайке Рис.3.3),
то за один оборот он продвинулся бы в направлении движения судна на рас-
стояние шага винта (Н). В действительности винт вращается в жидкости
(среде, не являющейся твердой опорой), поэтому за один оборот винт проходит
расстояние меньшее, чем Н.
                                              Путь, проходимый гребным
                                           винтом за один оборот в жидкой
                                           среде, называется абсолютной
                                           поступью (hB) или просто посту-
                                           пью винта:
                                                                      VB
                                                               hB =      ,   (36)
                                                                       n
                                             где: VB — скорость в аксаль-
                   Рис. 3.3            ном направлении (поступательная);
                                             n — частота вращения.
     Разность между шагом и абсолютной поступью называется абсолютным
скольжением винта или линейным скольжением (S) и определяется:
                             VB
       S = H – hB = H -         .                        (37)
                              n
     Поступь и скольжение винта выражают в безразмерных величинах. От-
ношение абсолютной поступи винта к его диаметру называется относительной
поступью гребного винта и определяется по формуле:
              hB   V
       λР =      = B .                                   (38)
              Д В nД В
       Безразмерные коэффициенты упора и момента определяются по форму-
лам:
                 P                   M
       К1 =             ;   К2 =             ;          (39)
              ρn 2 Д В4            ρn 2 Д В5
     Эти коэффициенты удобны для расчёта ходкости, но неудобны для расчё-
та маневренных режимов, т.к. при n = 0 эти коэффициенты стремятся к нулю.


                                                 18