ВУЗ:
Составители:
Рубрика:
♠
Z
. . . dx
R
d
Z
exp(−ax
2
)dx = (π/a)
d/2
,
Z
exp(−ax
2
+ xξ)dx =
Z
exp(−a(x − ξ/2a)
2
+ ξ
2
/4a)dx) = (π/a)
d/2
exp(ξ
2
/4a) ,
Z
exp(−ax
2
+ ixξ)dx = (π/a)
d/2
exp(−ξ
2
/4a),
exp(−ξ
2
/4a) = (a/π)
d/2
Z
exp(−ax
2
+ ixξ)dx ,
(4πt)
−d/2
exp(−(x − y)
2
/4t) = (2π)
−d
Z
exp(−tz
2
+ iz(x − y))dz ,
(4πt)
−d/2
Z
exp(−(x − y)
2
/4t)f(y)dy = (2π)
−d
Z
(
Z
exp(−tz
2
+ iz(x − y))f(y)dy)dz ,
(π)
−d/2
Z
exp(−z
2
)f(x + 2
√
tz)dz = (2π)
−d
Z
exp(−tz
2
+ ixz)F (f)(z)dz.
t → +0
f(x) = (2π)
−d
Z
exp(izx)F (f)(z)dz.
Z
f(x)
∗
g(x)dx = (2π)
−d
Z
f(x)
∗
(
Z
exp(−ixz)F (g)(z)dz)dx =
(2π)
−d
Z
F (f)
∗
(z)F (g)(z)dz.
♣
6.5 Êîìåíòàðèè è ëèòåðàòóðíûå óêàçàíèÿ.
♠
6.5.1 Ïðåîáðàçîâàíèå Ôóðüå.
Ïðèâåäåì âûâîä îòíîñÿùèõñÿ ê ïðåîáðàçîâàíèþ Ôóðüå ôîðìóë. Íèæå
ñèìâîë Z
. . . dx
îçíà÷àåò èíòåãðàë ïî ïðîñòðàíñòâó Rd . Èìååì:
Z
exp(−ax2 )dx = (π/a)d/2 ,
Z Z
exp(−ax + xξ)dx = exp(−a(x − ξ/2a)2 + ξ 2 /4a)dx) = (π/a)d/2 exp(ξ 2 /4a) ,
2
àíàëèòè÷åñêîå ïðîäîëæåíèå:
Z
exp(−ax2 + ixξ)dx = (π/a)d/2 exp(−ξ 2 /4a),
Z
2 d/2
exp(−ξ /4a) = (a/π) exp(−ax2 + ixξ)dx ,
Z
−d/2 2 −d
(4πt) exp(−(x − y) /4t) = (2π) exp(−tz 2 + iz(x − y))dz ,
Z Z Z
−d/2 2 −d
(4πt) exp(−(x − y) /4t)f (y)dy = (2π) ( exp(−tz 2 + iz(x − y))f (y)dy)dz ,
−d/2
Z
2
√ −d
Z
(π) exp(−z )f (x + 2 tz)dz = (2π) exp(−tz 2 + ixz)F (f )(z)dz.
Ïåðåõîäÿ â ïîñëåäíåì íåðàâåíñòâå ê ïðåäåëó t → +0, ïîëó÷àåì ôîðìóëó
îáðàùåíèÿ: Z
f (x) = (2π)−d exp(izx)F (f )(z)dz.
Îòñþäà ñëåäóåò ðàâåíñòâî Ïàðñåâàëÿ:
Z Z Z
∗ −d ∗
f (x) g(x)dx = (2π) f (x) ( exp(−ixz)F (g)(z)dz)dx =
Z
−d
(2π) F (f )∗ (z)F (g)(z)dz.
♣
460
Страницы
- « первая
- ‹ предыдущая
- …
- 470
- 471
- 472
- 473
- 474
- …
- следующая ›
- последняя »
