ВУЗ:
Составители:
44.1188
)1.01(
6800
)1.01(
4200
)1.01(
3000
)1.01(
10000
432
=
+
+
+
+
+
+
+
−
=P
руб.
Используя функцию ЧПС, которая вычисляет чистую текущую стоимость
периодических платежей переменной величины как сумму ожидаемых
доходов и расходов, дисконтированных нормой процента, получим тот же
результат:
ЧПС(10%, -10000, 3000, 4200, 6800) = 1188.44 руб.
Пример 2
Предположим, что есть два варианта инвестирования средств в течение 4
лет: в начале каждого года под 26% годовых или в конце каждого года под
38% годовых. Пусть ежегодно вносится 300000 руб. Определить, сколько
денег окажется на счете в конце 4-го года для каждого варианта.
Решение
В данном случае производятся периодические платежи, и расчет ведется по
формулам (4.3), (4.5). Наращенная стоимость к концу 4-го года для первого
варианта составит:
2210535)26.01(
26.0
1)26.01(
300000
3
=+⋅
−+
⋅=S
руб.
Для второго варианта:
2073742
38.0
1)38.01(
300000 =
−+
⋅=
n
S
руб.
Для проверки выполненных расчетов воспользуемся функцией БС:
БС(26%,4,-300000,,1) = 2210535 руб. - для первого варианта
БС(38%,4,-300000) = 2070742 руб. - для второго варианта
Пример 3
В долг берется 300000 руб. под годовую ставку 6%. В год выплачивается по
34000 руб. Сколько лет займут эти выплаты?
Решение
− 10000 3000 4200 6800 P = + + + = 1188 . 44 руб. (1 + 0 . 1) (1 + 0 . 1) 2 (1 + 0 . 1) 3 (1 + 0 . 1) 4 Используя функцию ЧПС, которая вычисляет чистую текущую стоимость периодических платежей переменной величины как сумму ожидаемых доходов и расходов, дисконтированных нормой процента, получим тот же результат: ЧПС(10%, -10000, 3000, 4200, 6800) = 1188.44 руб. Пример 2 Предположим, что есть два варианта инвестирования средств в течение 4 лет: в начале каждого года под 26% годовых или в конце каждого года под 38% годовых. Пусть ежегодно вносится 300000 руб. Определить, сколько денег окажется на счете в конце 4-го года для каждого варианта. Решение В данном случае производятся периодические платежи, и расчет ведется по формулам (4.3), (4.5). Наращенная стоимость к концу 4-го года для первого варианта составит: (1 + 0 .26 ) 3 − 1 S = 300000 ⋅ ⋅ (1 + 0 .26 ) = 2210535 руб. 0 .26 Для второго варианта: (1 + 0 .38 ) n − 1 S = 300000 ⋅ = 2073742 руб. 0 .38 Для проверки выполненных расчетов воспользуемся функцией БС: БС(26%,4,-300000,,1) = 2210535 руб. - для первого варианта БС(38%,4,-300000) = 2070742 руб. - для второго варианта Пример 3 В долг берется 300000 руб. под годовую ставку 6%. В год выплачивается по 34000 руб. Сколько лет займут эти выплаты? Решение
Страницы
- « первая
- ‹ предыдущая
- …
- 18
- 19
- 20
- 21
- 22
- …
- следующая ›
- последняя »