Судоводителям о плавучести и остойчивости судна. Байгунусов В.Б. - 42 стр.

UptoLike

Составители: 

Рис. 4.1.6.2. Схема размеров и ориентации свободной поверхности в плане
Момент инерции площади (ватерлинии) рассматривался ранее в разделе 4.1.1., где
показано, что для прямоугольника (см. рис. 4.1.6.2.) момент инерции площади отно-
сительно оси x вычисляется по формуле
* b³
i
x = --------
(20)
12
Рассмотрим, как изменяется остойчивость с изменением размеров свободной по-
верхности.
50
4.1.6. ВЛИЯНИЕ СВОБОДНОЙ ПОВЕРХНОСТИ ЖИДКОГО ГРУЗА НА ОСТОЙЧИВОСТЬ
Аналогия с подвешенным и перекатывающимся грузом прослеживается и в
поведении другого подвижного груза - жидкого груза со свободной поверхно-
стью, который имеет возможность переливаться в сторону наклоненного борта.
Если жидкость заполняет цистерну полностью и не имеет свободной поверхно-
сти,то такой жидкий груз теоретически ничем не отличается от твердого груза.
Рис. 4.1.6.1. Схема, иллюстрирующая поведение жидкого груза со свободной по-
верхностью.
Сначала рассмотрим случай, когда жидкостьпринадлежитсудну, т.е. у жидкого
груза первоначально свободной поверхности не было, затем по какой-то причине она
появилась. Судно эту жидкость не приняло и его водоизмещение D после образова-
ния свободной поверхности не изменилось. Жидкость находится в цистерне (см. рис.
4.1.6.1.) и ее уровень всегда параллелен ватерлинии. В прямом положении судна
(ватерлиния 0-0) ЦТ жидкости будет находится в точке g.
Приложив к судну кренящий момент М
кр, накреним его до ватерлинии 1-1, парал-
лельно которой установится уровень свободной поверхности. В результате, произой-
дет перетекание жидкости из клиновидного объема 1 в клиновидный объем 2 (пока-
зано пунктирной стрелкой), полнота объема цистерны сместится в сторону
39
4.1.2. ВЛИЯНИЕ ПЕРЕМЕЩЕНИЯ ГРУЗА НА ПОСАДКУ И ОСТОЙЧИВОСТЬ СУДНА
Эта задача для судоводителей имеет много практических приложений. По-
садка и остойчивость очень тесно связаны друг с другом, поэтому они обычно
рассматриваются совместно.
Мкр
Пусть из произвольной точки A надо переместить груз р в некоторую точку B по
линии АB и оценить, как после перемещения изменится посадка и остойчивость суд-
на (см.рис. 4.1.2.1.).
Сразу следует отметить, что в такой постановке эту задачу прямо решить невоз-
можно. Для ее решения необходимо искать обходные пути, а именно, разбить весь
процесс перемещения на несколько этапов (см.рис.4.1.2.1.), рассмотреть изменение
посадки и остойчивости на каждом этапе и затем обобщить результаты.
Такими этапами будутэтап вертикального перемещения (на расстояние
z),
этап горизонтального поперечного перемещения (
y) и этап горизонтального про-
дольного перемещения (
x).
B
O
pж
g1
Мв
0
рж
g
рж
ΔМкр
2
1
1
1
0
x
y
z
     Рис. 4.1.6.2. Схема размеров и ориентации свободной поверхности в плане
                                                                                    Рис. 4.1.6.1. Схема, иллюстрирующая поведение жидкого груза со свободной по-
  Момент инерции площади (ватерлинии) рассматривался ранее в разделе 4.1.1., где    верхностью.
показано, что для прямоугольника (см. рис. 4.1.6.2.) момент инерции площади отно-
сительно оси x вычисляется по формуле                                                  Сначала рассмотрим случай, когда жидкость “принадлежит” судну, т.е. у жидкого
                                        ℓ * b³                                      груза первоначально свободной поверхности не было, затем по какой-то причине она
                                  ix = --------                                     появилась. Судно эту жидкость не приняло и его водоизмещение D после образова-
(20)                                                                                ния свободной поверхности не изменилось. Жидкость находится в цистерне (см. рис.
                                          12                                        4.1.6.1.) и ее уровень всегда параллелен ватерлинии. В прямом положении судна
  Рассмотрим, как изменяется остойчивость с изменением размеров свободной по-       (ватерлиния 0-0) ЦТ жидкости будет находится в точке g.
верхности.                                                                             Приложив к судну кренящий момент Мкр, накреним его до ватерлинии 1-1, парал-
50                                                                                  лельно которой установится уровень свободной поверхности. В результате, произой-
                                                                                    дет перетекание жидкости из клиновидного объема 1 в клиновидный объем 2 (пока-
 4.1.6. ВЛИЯНИЕ СВОБОДНОЙ ПОВЕРХНОСТИ ЖИДКОГО ГРУЗА НА ОСТОЙЧИВОСТЬ
                                                                                    зано пунктирной стрелкой), полнота объема цистерны сместится в сторону
                                                                                                                                                                  39
   Аналогия с подвешенным и перекатывающимся грузом прослеживается и в
 поведении другого подвижного груза - жидкого груза со свободной поверхно-          4.1.2. ВЛИЯНИЕ ПЕРЕМЕЩЕНИЯ ГРУЗА НА ПОСАДКУ И ОСТОЙЧИВОСТЬ СУДНА
стью, который имеет возможность переливаться в сторону наклоненного борта.
 Если жидкость заполняет цистерну полностью и не имеет свободной поверхно-               Эта задача для судоводителей имеет много практических приложений. По-
сти,то такой жидкий груз теоретически ничем не отличается от твердого груза.         садка и остойчивость очень тесно связаны друг с другом, поэтому они обычно
                                                                                                              рассматриваются совместно.
                                                        Мкр
                                                                                      Пусть из произвольной точки A надо переместить груз р в некоторую точку B по
                                             Мв                                     линии АB и оценить, как после перемещения изменится посадка и остойчивость суд-
                                                   O                                на (см.рис. 4.1.2.1.).
                                                                                       Сразу следует отметить, что в такой постановке эту задачу прямо решить невоз-
                                                                                    можно. Для ее решения необходимо искать обходные пути, а именно, разбить весь
                                                                                    процесс перемещения на несколько этапов (см.рис.4.1.2.1.), рассмотреть изменение
                                                                                    посадки и остойчивости на каждом этапе и затем обобщить результаты.
                                                                                       Такими этапами будут – этап вертикального перемещения (на расстояние ⎯ℓz),
                                                                                    этап горизонтального поперечного перемещения (⎯ℓy) и этап горизонтального про-
                                                                                    дольного перемещения (⎯ℓx).
             0

         1                                                                     1
                                                                                                               ⎯ℓx
                                                                               0
                                                   ΔМкр                                            ⎯ℓy

                               1        pж                                                                                                      B
                                                   2                                                ⎯ℓz

                                        g          g1


                                   рж              рж