Задачи по математической статистике. Часть 2. Интервальное оценивание параметров распределения и критерии согласия - 29 стр.

UptoLike

m
j
x
j
x
j
0 1 2 3 4 5
m
j
12 9 27 38 32 12
N = 130
ξ
α = 0, 01
ξ
P (ξ = k) = C
k
10
· p
k
q
10k
, k = 0, 1, 2, ..., 10.
p
p
p
=
m
n
n = 10 · 130 = 1300
m =
5
X
j=0
m
j
· x
j
= 365
p
=
m
n
=
365
1300
0, 281; q
= 1 p
= 0, 719.
P {ξ = k}
P {ξ = 0} = P
0
= C
0
10
(p
)
0
· (q
)
10
0, 0369 nP
0
= 4, 797
P {ξ = 1} = P
1
= C
1
10
(p
)
1
· (q
)
9
0, 1443 nP
1
= 18, 759
P {ξ = 2} = P
2
= C
2
10
(p
)
2
· (q
)
8
0, 2538 nP
2
= 32, 994
P {ξ = 3} = P
3
= C
3
10
(p
)
3
· (q
)
7
0, 2645 nP
3
= 34, 385
P {ξ = 4} = P
4
= C
4
10
(p
)
4
· (q
)
6
0, 1809 nP
4
= 23, 517
P {ξ 5} = P
5
= 1 P (ξ < 5) = 0, 1196 nP
5
= 15, 548