Теория вероятностей и математическая статистика. Билялов Р.Ф. - 127 стр.

UptoLike

Составители: 

η
0
= k. η
t
a = 0;
π
l
= lim
t→∞
P (η
l
), a = 1, q > p.
q p; (q/p)
k
, q < p; π
0
=
qp
1+qp
;
π
k
=
π
0
p
(p/q)
k
, k 1.
ξ
t
ξ
t
h 0 P (ξ
h
= 2|ξ
0
= 1) = αh + o(h), P (ξ
h
= 1|ξ
0
= 2) =
βh + o(h). P
ij
(t) = P (ξ
t
= j|ξ
0
= i), i, j = 1, 2.
kP
ij
(t)k =
1
α+β
µ
β α
β α
+
e
(α+β)t
α+β
β α
β α
.
lim
t→∞
1
t
M(τ
1
(t)|ξ
0
= k), τ
1
(t)
τ
1
(t) =
t
R
0
δ
1
u
du, δ
1,1
= 1,
δ
1,2
= 0.
β/(α + β)
η
t
=
v
1
τ
1
(t) v
2
τ
2
(t) + x, τ
k
(t)
ξ
t
(t = ... 2, 1, 0, 1, 2, ...)
Mξ
t
= a, Dξ
t
= σ
2
.
η
t
= c
0
ξ
t
+ c
1
ξ
t1
+ c
2
ξ
t2
, c
0
+ c
1
+ c
2
= 1. Mη
t
, Dη
t
,
cov(η
t
1
, η
t
2
). cov(η
t
1
, η
t
2
) = R(|t
1
t
2
|).
Mη
t
= a, Dη
t
= (c
2
0
+ c
2
1
+ c
2
2
)σ
2
= R(0), R(1) = c
1
(c
0
+ c
2
)σ
2
,
R(2) = c
0
c
2
σ
2
, R (k) = 0, k 0.
η
t
R
t
(k) =
1
t
t
P
s=1
(η
s
a
t
)(η
s+k
a
t
), k = 0, 1, 2,
R(k).
η0 = k. Íàéòè: 1) âåðîÿòíîñòü òîãî, ÷òî ïðîöåññ ηt êîãäà-ëèáî ïîïàäåò
â ñîñòîÿíèå 0, åñëè a = 0; 2) ñòàöèîíàðíîå ðàñïðåäåëåíèå âåðîÿòíî-
ñòåé πl = lim P (ηl ), a = 1, q > p.
            t→∞
                                                                    q−p
             Îòâåò: 1) 1, åñëè q ≥ p; (q/p)k , åñëè q < p; 2) π0 = 1+q−p ;
                                                         π0      k
                                                   πk = p (p/q) , k ≥ 1.
    Çàäà÷à 10.8. Ìàðêîâñêèé ñëó÷àéíûé ïðîöåññ ξt ñ íåïðåðûâíûì
âðåìåíåì íàçûâàþò öåïüþ Ìàðêîâà, åñëè ìíîæåñòâî åãî ñîñòîÿíèé
êîíå÷íî èëè ñ÷åòíî. Ïóñòü ξt  öåïü Ìàðêîâà ñ äâóìÿ ñîñòîÿíèìè
(1 è 2) è ïðè h → 0 P (ξh = 2|ξ0 = 1) = αh + o(h), P (ξh = 1|ξ0 = 2) =
βh + o(h). Íàéòè Pij (t) = P (ξt = j|ξ0 = i), i, j = 1, 2.
                                          µ         ¶                  ¶
                                        1    β α           −(α+β)t β α
                 Îòâåò: kPij (t)k = α+β                + e α+β          .
                                             β α                   β α
   Çàäà÷à 10.10. Íàéòè lim 1t M (τ1 (t)|ξ0 = k), ãäå τ1 (t) îïðåäåëåíî
                               t→∞
â çàäà÷å 10.9.
                                                       Rt
   Óêàçàíèå. Èñïîëüçîâàòü ôîðìóëó τ1 (t) = δ1,ξu du, ãäå δ1,1 = 1,
                                                        0
δ1,2 = 0.
                                                             Îòâåò: β/(α + β)
   Çàäà÷à 10.12. Ðåøèòü çàäà÷ó 10.11, èñïîëüçóÿ ðàâåíñòâî ηt =
v1 τ1 (t) − v2 τ2 (t) + x, ãäå τk (t) îïðåäåëåíû â çàäà÷å 10.9, è ðåøåíèå
çàäà÷è 10.10.
     Çàäà÷à 10.14. Ïóñòü ξt (t = ... − 2, −1, 0, 1, 2, ...)  ïîñëåäîâà-
òåëüíîñòü íåçàâèñèìûõ ñëó÷àéíûõ âåëè÷èí ñ M ξt = a, Dξt = σ 2 .
Ïîëîæèì ηt = c0 ξt + c1 ξt−1 + c2 ξt−2 , c0 + c1 + c2 = 1. Íàéòè M ηt , Dηt ,
cov(ηt1 , ηt2 ). Ïðîâåðèòü, ÷òî cov(ηt1 , ηt2 ) = R(|t1 − t2 |).
Îòâåò: M ηt = a, Dηt = (c20 + c21 + c22 )σ 2 = R(0), R(1) = c1 (c0 + c2 )σ 2 ,
                                         R(2) = c0 c2 σ 2 , R(k) = 0, k ≥ 0.
   Çàäà÷à 10.16. Ïóñòü ηt  ïðîöåññ, îïðåäåëåííûé â çàäà÷å 10.14.
                          1   P
                              t
Ïîêàçàòü, ÷òî Rt∗ (k) =   t       (ηs − a∗t )(ηs+k − a∗t ), k = 0, 1, 2, ÿâëÿåòñÿ
                              s=1
àñèìïòîòè÷åñêè íåñìåùåííîé îöåíêîé R(k).


                                       127