Теория вероятностей и математическая статистика. Билялов Р.Ф. - 126 стр.

UptoLike

Составители: 

m
1
(p) =
v(p + β)
2
βα
p
2
(p + β)(p + α + β)
, m
2
(p) =
vβ(p + β) a(p + α)
p
2
(p + β)(p + α + β)
,
lim
t→∞
M
k
(t)
t
= m
k
(p)|
p=0
=
vβ
2
β(α + β)
.
ξ
t
(t = ...2, 1, 0, 1, 2, ...)
ξ
t
= a, Dξ
t
= σ
2
.
η
t
= c
0
ξ
1
+ c
1
ξ
t1
+ c
2
ξ
t2
, c
0
+ c
1
+ c
2
= 1 a
t
= (η
1
+ η
2
+ ···η
t
)/t.
a
t
, Da
t
. a
t
a
Mη = a. Ma
= a. a Dη
t
=
(c
2
0
+ c
2
1
+ c
2
2
)σ
2
.
cov(η
t
1
, η
t
2
) = σ
2
0, t
1
+ 2 < t
2
c
0
c
2
, t
1
+ 2 = t
2
c
0
c
1
+ c
1
c
2
, t
1
+ 2 > t
2
Da
t
= t
2
σ
2
(t(c
2
0
+ c
2
1
+ c
2
2
) + 2(t 1)(c
0
c
1
+ c
1
c
2
) + 2(t 2)c
0
c
2
)
0, t . a
t
τ
k
= θ
k
θ
k1
, θ
k
k
P (τ
k
> t + s|τ > s) = P (τ
k
> t).
µ
t
ϕ(x) = Mm
µ
t
= px
2
+ 1 p. λ = lim
t→∞
P (µ
t
=
0), p > 1/2; B
t
= Mµ
t
(µ
t
1) Dµ
t
p = 1/2.
λ = (1 p/p); Dµ
t
= B
t
= t, Mµ
t
= 1.
ξ
t
(t = 1, 2, ...)
P (ξ
t
= 1) = p, P (ξ
t
= 1) = 1 p = q.
η
t+1
=
½
η
t
+ ξ
t+1
, η
t
6= 0,
a, η
t
= 0, t = 0, 1, 2, ...;
Èñïîëüçóÿ îïåðàöèîííîå èñ÷èñëåíèå, íàõîäèì èçîáðàæåíèÿ

                  v(p + β)2 − βα              vβ(p + β) − a(p + α)
    m1 (p) =    2
                                    , m2 (p) = 2                   ,
               p (p + β)(p + α + β)           p (p + β)(p + α + β)
îòêóäà
                       Mk (t)                vβ 2 − aα
                    lim       = mk (p)|p=0 =           .
                   t→∞  t                    β(α + β)
    Çàäà÷à 10.15. Ïóñòü ξt (t = ... − 2, −1, 0, 1, 2, ...)  ïîñëåäîâàòåëü-
íîñòü íåçàâèñèìûõ ñëó÷àéíûõ âåëè÷èí ñ ξt = a, Dξt = σ 2 . Ïîëîæèì
ηt = c0 ξ1 + c1 ξt−1 + c2 ξt−2 , c0 + c1 + c2 = 1 è a∗t = (η1 + η2 + · · · ηt )/t.
Íàéòè a∗t , Da∗t . ßâëÿåòñÿ ëè a∗t íåñìåùåííîé è ñîñòîÿòåëüíîé îöåí-
êîé a?
    Ðåøåíèå. M η = a. M a∗ = a. a∗  íåñìåùåííàÿ îöåíêà. Dηt =
(c0 + c21 + c22 )σ 2 .
  2

                                      
                                       0,              t1 + 2 < t2
                                    2
                cov(ηt1 , ηt2 ) = σ     c0 c2 ,         t1 + 2 = t2
                                      
                                        c0 c1 + c1 c2 , t1 + 2 > t2
Da∗t = t−2 σ 2 (t(c20 + c21 + c22 ) + 2(t − 1)(c0 c1 + c1 c2 ) + 2(t − 2)c0 c2 ) →
0, t → ∞. a∗t  ñîñòîÿòåëüíàÿ îöåíêà.
                     Çàäà÷è äîìàøíåãî çàäàíèÿ.
   Çàäà÷à 10.2. Äîêàçàòü, ÷òî äëÿ ëþáîãî ïðîìåæóòêà âðåìåíè
τk = θk − θk−1 , ãäå θk  ìîìåíò k−ãî ñêà÷êà ïðîöåññà Ïóàññîíà,
âûïîëíÿåòñÿ ðàâåíñòâî P (τk > t + s|τ > s) = P (τk > t).
   Çàäà÷à 10.4. Ïóñòü µt  âåòâÿùèéñÿ ïðîöåññ ñ íåïðåðûâíûì
âðåìåíåì; ϕ(x) = M mµt = px2 + 1 − p. Íàéòè: à) λ = lim P (µt =
                                                                    t→∞
0), p > 1/2; á) Bt = M µt (µt − 1) è Dµt ïðè p = 1/2.
                     Îòâåò: à) λ = (1 − p/p); á) Dµt = Bt = t, M µt = 1.
    Çàäà÷à 10.6. Ñëó÷àéíûå âåëè÷èíû ξt (t = 1, 2, ...) íåçàâèñèìû è
P (ξt = 1) = p, P (ξt = −1) = 1 − p = q. Ïîëîæèì
                    ½
                       ηt + ξt+1 , åñëè ηt 6= 0,
            ηt+1 =
                       a,          åñëè ηt = 0, t = 0, 1, 2, ...;

                                       126