Теория вероятностей и математическая статистика. Билялов Р.Ф. - 124 стр.

UptoLike

Составители: 

t
f
2
(t, s) = βf
1
(t, s) (β + is)f
2
(t, s).
ξ
t
, ξ
t
= 1,
v
1
, ξ
t
= 2, v
2
.
η
t
t. lim
t→∞
M
k
(t, x),
M
k
(t, x) = M(η
t
|η
0
= x, ξ
0
= k), k = 1, 2.
m
1
(t) = M(η
t
|ξ
0
= 1), m
2
= M(η
t
|ξ
0
= 2).
m
1
(t + h) = M(η
t+h
|ξ
0
= 1) = M(η
t+h
η
h
+ η
h
|ξ
0
= 1) =
= m
1
(h) + M(η
t+h
η
h
|ξ
0
= 1) = m
1
(h) +
2
X
k=1
P (ξ
h
= k|ξ
0
= 1)·
·M(η
t+h
η
h
|ξ
h
= k) = v
1
h + (1 αh)m
1
(t) + αhm
2
(t).
m
0
1
= v
1
+ α(m
2
m
1
), m
1
(0) = 0,
m
0
2
= v
2
β(m
2
m
1
), m
2
(0) = 0.
lim
t→∞
m
k
(t)/t = (βv
1
αv
2
)/(α + β).
ξ
0
= 1,
v, ξ
t
= 2
a
η
t
t. η
t
M
k
(t, x) = M(η
t
|η
0
= x, ξ
0
= k), k = 1, 2.
lim
t→∞
M
k
(t, x)/t.
η
t
η
t
t t
0
t
0
. ξ
t
0
δ
= 1, ξ
s
= 2 t
0
δ < s < t
0
+ δ = t,
η
t
0
= η
t
0
δ
a · δ
2
/2, η
t
= η
t
0
δ
2
2
. ξ
t
0
δ
= 1, ξ
s
= 2
Àíàëîãè÷íûì îáðàçîì íàõîäèì
                  ∂
                     f2 (t, s) = βf1 (t, s) − (β + is)f2 (t, s).
                  ∂t
   Çàäà÷à 10.11. Äâèæåíèå òî÷êè ïî ïðÿìîé óïðàâëÿåòñÿ öåïüþ
Ìàðêîâà ξt , îïðåäåëåííîé â çàäà÷å 9. Åñëè ξt = 1, òî òî÷êà äâèæåòñÿ
âïðàâî ñî ñêîðîñòüþ v1 , à åñëè ξt = 2, òî âëåâî ñî ñêîðîñòüþ v2 .
Ïóñòü ηt  êîîðäèíàòà òî÷êè â ìîìåíò t. Íàéòè lim Mk (t, x), ãäå
                                                            t→∞

                Mk (t, x) = M (ηt |η0 = x, ξ0 = k), k = 1, 2.

   Ðåøåíèå. Ïîëîæèì m1 (t) = M (ηt |ξ0 = 1), m2 = M (ηt |ξ0 = 2).
      m1 (t + h) = M (ηt+h |ξ0 = 1) = M (ηt+h − ηh + ηh |ξ0 = 1) =
                                                      2
                                                      X
   = m1 (h) + M (ηt+h − ηh |ξ0 = 1) = m1 (h) +              P (ξh = k|ξ0 = 1)·
                                                      k=1

        ·M (ηt+h − ηh |ξh = k) = v1 h + (1 − αh)m1 (t) + αhm2 (t).
                   m01 = v1 + α(m2 − m1 ), m1 (0) = 0,
                  m02 = −v2 − β(m2 − m1 ), m2 (0) = 0.
                    lim mk (t)/t = (βv1 − αv2 )/(α + β).
                   t→∞

    Çàäà÷à 10.13. Äâèæåíèå òî÷êè ïî ïðÿìîé óïðàâëÿåòñÿ öåïüþ
Ìàðêîâà, îïðåäåëåííîé â çàäà÷å 9. Åñëè ξ0 = 1, òî òî÷êà äâèæåòñÿ
âïðàâî ñî ñêîðîñòüþ v, à ïðè ξt = 2 òî÷êà äâèæåòñÿ âëåâî ñ ïîñòî-
ÿííûì óñêîðåíèåì a (ïðè íà÷àëå äâèæåíèÿ ñ óñêîðåíèåì íà÷àëüíàÿ
ñêîðîñòü ñ÷èòàåòñÿ ðàâíîé 0). Ïóñòü ηt − êîîðäèíàòà òî÷êè â ìî-
ìåíò t. ßâëÿåòñÿ ëè ïðîöåññ ηt ìàðêîâñêèì? Ñîñòàâèòü èíòåãðàëü-
íîå óðàâíåíèå äëÿ Mk (t, x) = M (ηt |η0 = x, ξ0 = k), k = 1, 2. Íàéòè
 lim Mk (t, x)/t.
t→∞
     Ðåøåíèå. Ïðîöåññ ηt íå ÿâëÿåòñÿ ìàðêîâñêèì, òàê êàê êîîðäè-
íàòà ηt â ìîìåíò t ïîñëå ìîìåíòà t0 çàâèñèò îò ñîñòîÿíèÿ äî ìîìåíòà
t0 . Åñëè, íàïðèìåð, ξt0 −δ = 1, ξs = 2 ïðè t0 − δ < s < t0 + δ = t, òî
ηt0 = ηt0 −δ − a · δ 2 /2, ηt = ηt0 −δ − 2aδ 2 . Åñëè æå ξt0 −δ = 1, ξs = 2 ïðè

                                      124