Теория вероятностей и математическая статистика. Билялов Р.Ф. - 125 стр.

UptoLike

Составители: 

t
0
δ < s < t
0
t
0
< s < t
0
+ δ ξ
t
0
= 1, η
t
0
= η
t
0
δ
a ·δ
2
/2,
η
t
= η
t
0
2
/2 = η
t
0
δ
2
.
τ
ξ
0
= 1. p
ξ
() = α
αx
.
P (τ > t) = e
αt
.
M
1
(t, x) = M(η
t
0
= x, ξ
0
= 1) =
= P (τ > t)M (η
t
|η
0
= x, ξ
s
= 1, 0 s t)+
+
t
Z
0
p
τ
(u)duM(η
t
|η
0
= x, ξ
s
= 1 0 s u, ξ
0
= 2).
M
1
(t, x) = P (τ > t)(x + vt) +
t
Z
0
p
τ
(u)M
2
(t u, x + vu)du =
= e
αt
(x + vt) +
t
Z
0
αe
αu
M
2
(t u, x + vu)du.
τ
ξ
0
= 2
. p
τ
(
x
) =
βe
βx
. τ
=
u < t,
[0, u] a
x au
2
/2.
M
1
(t, x),
M
2
(t, x) = e
βt
(x at
2
/2) +
t
Z
0
βe
βu
M
1
(t u, x at
2
/2)du.
M
k
(t, x) = x + M
k
(t, 0), = 0
M
1
(t, 0) = v(1 e
αt
) +
t
R
0
αe
αu
M
2
(t u, 0)du,
M
2
(t, 0) = a[(βt + 1)e
βt
1]
2
+
t
R
0
βe
βu
M
1
(t u)du
.
t0 − δ < s < t0 è ïðè t0 < s < t0 + δ è ξt0 = 1, òî ηt0 = ηt0 −δ − a · δ 2 /2,
ηt = ηt0 − aδ 2 /2 = ηt0 −δ − aδ 2 .
    Ïóñòü τ − ñëó÷àéíîå âðåìÿ äî ïåðâîãî âûõîäà èç ñîñòîÿíèÿ 1
ïðè óñëîâèè, ÷òî ξ0 = 1. Êàê â çàäà÷å 7 íàõîäèì, ÷òî pξ () = α−αx .
P (τ > t) = e−αt .

                        M1 (t, x) = M (ηt /η0 = x, ξ0 = 1) =

                  = P (τ > t)M (ηt |η0 = x, ξs = 1, 0 ≤ s ≤ t)+
            Zt
        +        pτ (u)duM (ηt |η0 = x, ξs = 1 ïðè 0 ≤ s ≤ u, ξ0 = 2).
            0

                                                    Zt
     M1 (t, x) = P (τ > t)(x + vt) +                     pτ (u)M2 (t − u, x + vu)du =
                                                    0

                                         Zt
                      −αt
                 =e         (x + vt) +        αe−αu M2 (t − u, x + vu)du.
                                         0

Ïóñòü òåïåðü τ ñëó÷àéíîå âðåìÿ äî ïåðâîãî âûõîäà èç ñîñòîÿíèÿ
2 ïðè óñëîâèè, ÷òî ξ0 = 2. pτ (x) = βe−βx . Åñëè τ = u < t, òî â
ïðîìåæóòêå [0, u] ÷àñòèöà áóäåò äâèãàòüñÿ ñ óñêîðåíèåì a âëåâî è
çàéìåò â êîíöå ïðîìåæóòêà ïîëîæåíèå x − au2 /2. Â èòîãå, êàê è â
ñëó÷àå M1 (t, x), ïîëó÷àåì

                                               Zt
                       −βt          2
     M2 (t, x) = e           (x − at /2) +              βe−βu M1 (t − u, x − at2 /2)du.
                                                0

Òàê êàê Mk (t, x) = x + Mk (t, 0), òî ïðè = 0 èìååì
     
                               Rt −αu
                         −αt
      M1 (t, 0) = v(1 − e )/α + αe    M2 (t − u, 0)du,
                                                    0                                 .
     
                                           Rt
      M2 (t, 0) = a[(βt + 1)e−βt − 1]/β 2 + βe−βu M1 (t − u)du
                                                               0



                                               125