Расчетно-графические работы по динамике. Блохина А.И - 8 стр.

UptoLike

8
=
=
=
2
25,022
2
1
120
5,0
1
10
1
e
e
b
e
gV
bz
B
,
V
B
= 4,15 м/с . (6)
Рассмотрим движение материальной точки на участке ВС. Изобразим в
произвольном положении точку и действующие на нее силы P=mg, N, F
ТР
и F.
Введем оси координат x и y и составим дифференциальное уравнение движения
точки в проекции на оси x и y
XTP
X
FFmg
dt
dV
m += αsin , (7)
α
cos
0
mg
N
.(8)
Найдем силу N из уравнения (8)
α
cos
mg
N
=
.
Из этого равенства и закона Кулона F
TP
=fN определим силу трения
α
cosfmgF
TP
=
.
Подставим значения сил трения и F
X
в уравнение (7)
( ) ( )
tfmg
dt
dV
m
X
3sin16cossin += αα .(9)
Разделим обе части уравнения (9) на m и подставим численные значения
параметров
(
)
(
)
2,330cos2,030sin8,9cossin ==
oo
αα fg .
Имеем
( )
t
dt
dV
X
3sin162,3 += .(10)
Умножая обе части уравнения (10) на dt и интегрируя, получим
( )
2
3cos
3
16
2,3 CttV
X
+= .(11)
Из начального условия V(0) = V
B
и (6) получим
48,90cos
3
16
15,4
2
=+=C .
8

                          1 − e −2bz      1 − e −2⋅0,5⋅2         1
                VB2 = g              = 10                = 201 − 2  ,
                              b               0,5             e 

                      VB = 4,15 м/с .                                       (6)

     Рассмотрим движение материальной точки на участке ВС. Изобразим в
произвольном положении точку и действующие на нее силы P=mg, N, FТР и F.
Введем оси координат x и y и составим дифференциальное уравнение движения
точки в проекции на оси x и y
                                dV X
                              m      = mg sin α − FTP + F X ,          (7)
                                 dt

                                      0 = N − mg cosα .                     (8)
Найдем силу N из уравнения (8)

                                N = mg cosα .

Из этого равенства и закона Кулона FTP=fN определим силу трения

                                FTP = fmg cos α .

Подставим значения сил трения и FX в уравнение (7)

                                = mg (sin α − f cos α ) + 16 sin (3t ) .
                           dV X
                      m                                                     (9)
                            dt

Разделим обе части уравнения (9) на m и подставим численные значения
параметров
                                             (                     )
                g (sin α − f cos α ) = 9,8 sin 30o − 0,2 cos 30o = 3,2 .

                              dV X
    Имеем                          = 3,2 + 16 sin (3t ) .                  (10)
                               dt

Умножая обе части уравнения (10) на dt и интегрируя, получим

                                             16
                              V X = 3,2t −      cos(3t ) + C 2 .           (11)
                                              3

Из начального условия V(0) = VB и (6) получим

                                      16
                      C 2 = 4,15 +       cos 0 = 9,48 .
                                       3