Математический анализ. Методические рекомендации. Бондарева Е.В. - 39 стр.

UptoLike

Составители: 

Рубрика: 

— 39 —
()
,
2
0
0
dxxfa
π
π
=
() ( )
.,2,1,cos
2
0
0
K=
π
=
π
ndxnxxfa
Îòñþäà
,0
24
2
2
1
4
2
0
2
0
0
=
π
π
=
π
π
=
π
π
x
xdxxa
()
.,2,1,cos
2
1
4
2
0
K=
π
π
=
π
ndxnxxa
n
Ïîñëåäíèé èíòåãðàë âû÷èñëÿåì ìåòîäîì èíòåãðèðîâà èÿ
ïî ÷àñòÿì, ïîëàãàÿ xu 2π=
,
nxdxdv cos
=
.
Îòñþäà
.sin
1
cos,2 nx
n
nxdxvdxdu
===
Ñëåäîâàòåëüíî,
(( ) )
()
=π
π
=
π
=
=
π
+π
π
=
π
π
π
n
n
nx
n
nxdx
n
nx
xa
n
cos1
1
cos
2
2
1
sin
2sin
2
2
1
2
0
2
0
0
()
π
=π
π
=
íå÷åòíîååñëè,
2
,÷åòíîååñëè,0
cos1
1
2
2
n
n
n
n
n
.
Òàêèì îáðàçîì, èñêîìîå ðàçëîæåíèå èìååò âèä:
.
5
5cos
3
3cos
cos
2
2
1
4
22
+++
π
=
π
K
xx
xx
                 2π
             a0 = ∫ f (x )dx,
                 π0
                 2π
             a0 = ∫ f (x )cos nx dx,                     (n = 1,2,K).
                 π0
    Îòñþäà
                                                                   π
            2 π π 1       2π     x2 
        a0 = ∫  − x  dx =  x −  = 0,
            π0 4 2        π4      2 0
            2 π 1 
              π

        an = ∫  − x  cos nx dx, (n = 1,2,K).
            π0 4 2 
    Ïîñëåäíèé èíòåãðàë âû÷èñëÿåì ìåòîäîì èíòåãðèðîâà èÿ
ïî ÷àñòÿì, ïîëàãàÿ u = π − 2 x , dv = cos nxdx .
     Îòñþäà
                                            1
                                      ∫
              du = −2dx , v = cos nxdx = sin nx.
                                            n
     Ñëåäîâàòåëüíî,
                   1                                                
                                                 π
                                    sin nx               2π
           an =       ( (π − 2 x )          )       +    ∫ sin nxdx  =
                  2π                  n         0       π0          
                                      π
                   1  2                       1
              =       − cos nx          =−       (1 − cos nπ )=
                  2π  n2            0
                                               n2π
                              0, åñëè n − ÷åòíîå,
            1                 
          = 2 ( 1 − cos nπ) =  2
           nπ                  n 2 π , åñëè n − íå÷åòíîå .

    Òàêèì îáðàçîì, èñêîìîå ðàçëîæåíèå èìååò âèä:
             π 1   2         cos 3x cos 5 x    
              − x =  cos x +       +        + K .
             4 2   π           32     52       




                                   — 39 —