Сопротивление материалов. Учебно-методическое пособие. Буланов В.Е - 17 стр.

UptoLike

Составители: 

Пример 1. Абсолютно жесткий брус опирается на шарнирно неподвижную опору и прикреплен к
двум стержням с помощью шарниров (рис. 1.2). Требуется: 1) найти усилия и напряжения в стержнях,
выразив их через силу Q; 2) найти допускаемую нагрузку Q
доп
, приравняв большее из напряжений в
двух стержнях расчетному сопротивлению
R = 210 МПа; 3) найти допускаемую нагрузку
т
доп
Q по предельному равновесию, если предел текучести
т
σ = 240 МПа; 4) сравнить допускаемые нагрузки.
Дано: A = 10 cм
2
; a = 1 м; b = 1,4 м; c = 1,6 м; k = 2.
Р е ш е н и е
1 Рассмотрим геометрическую сторону задачи. Для этого покажем схему деформирования заданной
системы (рис. 1.3), обозначим буквами характерные точки абсолютно жесткого бруса и пронумеруем
стержни.
Абсолютно жесткий брус под действием нагрузки Q повернется относительно шарнирной опоры S
по часовой стрелке на угол α. Принимая угол α очень малым, из рис. 1.3 видим, что первый стержень
станет короче на величину TFl =
1
, а второйдлиннее на DWl =
2
. Из подобия треугольников STF и
SDW получим
(
)
a
cba
TFDW
+
+
=
,
или
(
)
a
cba
ll
+
+
=
12
. (1.1)
Уравнение (1.1) является уравнением совместности деформаций.
2 Рассмотрим статическую сторону задачи. Покажем все силы, действующие на абсолютно жест-
кий брус (рис. 1.4). Направления усилий N
1
и N
2
определяем по схеме деформирования (рис. 1.3).
Здесь неизвестными являются усилия N
1
, N
2
, а также две составляющие реакции опоры S. Общее
число неизвестных равно четырем. Для решения задачи можно составить только три независимых урав-
нения равновесия, например,
== ;0
S
HX (1.2)
A
c
b
a
Q
kA
c
a
c
b
a
Q
c
a
S
T
D
F
W
1
2
α
Рис. 1.4
c
b
a
Q
S
H
S
R
S
N
1
N
2