Механика. Булгаков Н.А - 28 стр.

UptoLike

Рубрика: 

энергия (отсчитанная от положения равновесия) шара в начальном состоянии равна его ки-
нетической энергии в момент времени перед соударением:
mgh
mv
=
2
2
,
где hвысота поднятия шара от положения равновесия; m – масса шара;
vскорость шара перед соударением.
Аналогичное соотношение выполняется и после соударения:
1
2
1
2
mgh
mv
=
,
где h
1
высота поднятия шара от положения равновесия; v
1
скорость шара после соударе-
ния.
Энергия, теряемая шаром при взаимодействии с наковальней, равна, очевидно, убыли
его кинетической энергии:
()
1
2
1
2
22
hhmg
mv
mv
E ==
.
Из геометрических соображений следует, что
(
)
α
=
cos1lh и
(
)
11
cos1 α
=
lh , поэтому:
(
)
α
α
=
coscos
1
mglE
. (1)
Среднюю мощность потери энергии можно рассчитать по формуле:
(
)
t
mgl
t
E
N
αα
==
coscos
1
. (2)
Коэффициент восстановления механической энергии представляет собой отношение
энергии системы после взаимодействия к энергии системы до взаимодействия:
α
α
===ε
cos1
cos1
111
h
h
E
E
. (3)
Для нахождения средней силы взаимодействия воспользуемся вторым законом Ньютона:
F
ср
t = p = p
1
p.
Направления соответствующих векторов показаны на рис. 2.
Если спроектировать векторное равенство на ось, направленную
вправо, то получим:
(
)
vvmpptF
+
=
+
=
11ср
.
Скорости v
1
и v шара можно выразить через углы отклонений α
1
и α:
v
v
1
F
До взаимо-
действия
После взаи-
модействия
Рис. 2