Численные методы. Ч.1. Исследование функций. Буслов В.А - 34 стр.

UptoLike

Составители: 

Рубрика: 

h k!f
01...k
=
k
f
0
h
k
, N
k
(x) =
k1
Q
i=0
(x x
i
) = (x x
0
)
[k]
,
p(x) = f
0
+
f
0
h
(x x
0
)
[1]
+
1
2!
2
f
0
h
2
(x x
0
)
[2]
+ . . . +
1
N!
N
f
0
h
N
(x x
0
)
[N]
.
k
p(x)|
x=x
0
=
k
f
0
.
k
p(x
0
) = p(x
0
+ kh) C
1
k
p(x
0
+ (k 1)h) + . . . + (1)
k
p(x
0
) =
= f
k
C
1
k
f
k1
+ . . . + f
0
=
k
f
0
.
p(x)
1) p(x
0
) = f
0
,
2) p(x
k
) = p
0
+
p
0
h
(x
k
x
0
)
[1]
+ . . . +
k
p
0
k!h
k
(x
k
x
0
)
[k]
+ 0 .
x
k
x
0
= kh
(x
k
x
0
)
[m]
= kh(kh h) . . . (kh (m 1)h) = h
m
k(k 1) . . . (k (m 1)) ,
p(x
k
) = f
0
+
f
0
h
kh +
2
f
0
2!h
2
h
2
k(k 1) + . . . +
k
f
0
k!h
k
h
k
k(k 1) . . . 1 =
= f
0
+ f
0
k +
2
f
0
2!
k(k 1) + . . . +
k
f
0
k!h
k
k(k 1) . . . 1 =
=
k
X
m=0
C
m
k
m
f
0
= (1 + ∆)
k
f
0
= f
k
h 0 p(x) f
m
f
0
(∆x)
m
f
(m)
(x
0
) (x x
0
)
[m]
(x x
0
)
m
p(x) f
0
+ f
0
(x
0
)(x x
0
) +
f
00
(x
0
)
2!
(x x
0
)
2
+ . . . +
f
(N)
(x
0
)
N!
(x x
0
)
N
=
=
N
X
k=0
f
(k)
(x
0
)
k!
(x x
0
)
k
.
p(x) = f
0
+ qf
0
+
q(q 1)
2!
2
f
0
+ . . . +
q(q 1) . . . (q N + 1)
N!
N
f
0
,
q =
xx
0
h
(x x
0
)
[m]
h
m
=
(x x
0
)(x x
0
h) . . . (x x
0
(m 1)h)
h h . . . h
=
= q(q 1) . . . (q m + 1) .