Численные методы. Ч.1. Исследование функций. Буслов В.А - 32 стр.

UptoLike

Составители: 

Рубрика: 

f(x + kh) =
k
X
s=0
C
s
k
s
f(x).
f(x + h) = f(x) + f(x) = (1 + ∆)f(x) ,
f(x + 2h) = (1 + ∆)f(x + h) = (1 + ∆)
2
f(x) ,
. . . ,
f(x + kh) = (1 + ∆)
k
f(x) ,
(1 + ∆)
k
=
k
P
s=0
C
s
k
s
C
s
k
=
k(k1)...(ks+1)
s!
=
k!
(ks)!s!
,
k
f(x) =
k
X
s=0
C
s
k
(1)
s
f(x + (k s)h) .
= (1 + ∆) 1
k
f(x) = [(1 + ∆) 1]
k
f(x) =
k
X
s=0
C
s
k
(1 + ∆)
ks
(1)
s
f(x) =
=
k
X
s=0
C
s
k
(1)
s
f(x + (k s)h),
k
f(x) = f(x + kh) C
1
k
f(x + (k 1)h) + C
2
k
f(x + (k 2)h)+
+ . . . + (1)
k
f(x).
k
f(x) = (∆x)
k
f
(k)
(x + Θkx) ,
0 < Θ < 1 f C
k
f = xf
0
(x+Θ∆x)
[x, x+x]
ξ
f
x
=
f(x+h)f(x)
x
= f
0
(ξ) ξ [x, x + x] k
k
f(x) = (∆x)
k
f
(k)
(x + Θkx) .
k+1
f(x) = ∆(∆
k
f) = ∆[f
(k)
(x + kΘ∆x)]∆
k
x =
=
k
x[f
(k)
(x + x + kΘ∆x) f
(k)
(x + kΘ∆x)] .